Back to Search Start Over

An eigenvalue problem for a quasilinear elliptic field equation on R^n

Authors :
Daniela Visetti
Anna Maria Micheletti
Vieri Benci
Benci, V
Micheletti, A
Visetti, D
Source :
Topol. Methods Nonlinear Anal. 17, no. 2 (2001), 191-211
Publication Year :
2001
Publisher :
Uniwersytet Mikolaja Kopernika * Wydawnictwo Naukowe,Nicolaus Copernicus University Press, 2001.

Abstract

We study the field equation $$ -\Delta u+V(x)u+\varepsilon^r(-\Delta_pu+W'(u))=\mu u $$ on $\mathbb R^n$, with $\varepsilon$ positive parameter. The function $W$ is singular in a point and so the configurations are characterized by a topological invariant: the topological charge. By a min-max method, for $\varepsilon$ sufficiently small, there exists a finite number of solutions $(\mu(\varepsilon),u(\varepsilon))$ of the eigenvalue problem for any given charge $q\in{\mathbb Z}\setminus\{0\}$.

Details

Language :
English
Database :
OpenAIRE
Journal :
Topol. Methods Nonlinear Anal. 17, no. 2 (2001), 191-211
Accession number :
edsair.doi.dedup.....69ddb3a8fd81886a00c1c7e4fb6d29b9