Back to Search
Start Over
An eigenvalue problem for a quasilinear elliptic field equation on R^n
- Source :
- Topol. Methods Nonlinear Anal. 17, no. 2 (2001), 191-211
- Publication Year :
- 2001
- Publisher :
- Uniwersytet Mikolaja Kopernika * Wydawnictwo Naukowe,Nicolaus Copernicus University Press, 2001.
-
Abstract
- We study the field equation $$ -\Delta u+V(x)u+\varepsilon^r(-\Delta_pu+W'(u))=\mu u $$ on $\mathbb R^n$, with $\varepsilon$ positive parameter. The function $W$ is singular in a point and so the configurations are characterized by a topological invariant: the topological charge. By a min-max method, for $\varepsilon$ sufficiently small, there exists a finite number of solutions $(\mu(\varepsilon),u(\varepsilon))$ of the eigenvalue problem for any given charge $q\in{\mathbb Z}\setminus\{0\}$.
- Subjects :
- Applied Mathematics
Mathematical analysis
Charge (physics)
Function (mathematics)
Invariant (mathematics)
Field equation
Nonlinear systems, nonlinear Schrödinger equations, nonlinear eigenvalue problem
Finite set
Analysis
Topological quantum number
Eigenvalues and eigenvectors
Mathematics
Mathematical physics
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Topol. Methods Nonlinear Anal. 17, no. 2 (2001), 191-211
- Accession number :
- edsair.doi.dedup.....69ddb3a8fd81886a00c1c7e4fb6d29b9