Back to Search
Start Over
The Role of Proliferation in Determining Response to Neoadjuvant Chemotherapy in Breast Cancer: A Gene Expression–Based Meta-Analysis
- Source :
- Clinical Cancer Research. 22:6039-6050
- Publication Year :
- 2016
- Publisher :
- American Association for Cancer Research (AACR), 2016.
-
Abstract
- Purpose: To provide further insight into the role of proliferation and other cellular processes in chemosensitivity and resistance, we evaluated the association of a diverse set of gene expression signatures with response to neoadjuvant chemotherapy (NAC) in breast cancer. Experimental Design: Expression data from primary breast cancer biopsies for 1,419 patients in 17 studies prior to NAC were identified and aggregated using common normalization procedures. Clinicopathologic characteristics, including response to NAC, were collected. Scores for 125 previously published breast cancer–related gene expression signatures were calculated for each tumor. Results: Within each receptor-based subgroup or PAM50 subtype, breast tumors with high proliferation signature scores were significantly more likely to achieve pathologic complete response to NAC. To distinguish “proliferation-associated” from “proliferation-independent” signatures, we used correlation and linear modeling approaches. Most signatures associated with response to NAC were proliferation associated: 90.5% (38/42) in ER+/HER2− and 63.3% (38/60) in triple-negative breast cancer (TNBC). Proliferation-independent signatures predictive of response to NAC in ER+/HER2− breast cancer were related to immune activity, while those in TNBC comprised a diverse set of signatures, including immune, DNA damage, signaling pathways (PI3K, AKT, Ras, and EGFR), and “stemness” phenotypes. Conclusions: Proliferation differences account for the vast majority of predictive capacity of gene expression signatures in neoadjuvant chemosensitivity for ER+/HER2− breast cancers and, to a lesser extent, TNBCs. Immune activation signatures are proliferation-independent predictors of pathologic complete response in ER+/HER2− breast cancers. In TNBCs, significant proliferation-independent signatures include gene sets that represent a diverse set of cellular processes. Clin Cancer Res; 22(24); 6039–50. ©2016 AACR.
- Subjects :
- 0301 basic medicine
Cancer Research
Receptor, ErbB-2
Gene Expression
Antineoplastic Agents
Triple Negative Breast Neoplasms
Biology
Bioinformatics
Article
Phosphatidylinositol 3-Kinases
03 medical and health sciences
0302 clinical medicine
Breast cancer
Immune system
Gene expression
medicine
Humans
Breast
skin and connective tissue diseases
Protein kinase B
PI3K/AKT/mTOR pathway
Cell Proliferation
Neoplasm Staging
Gene Expression Profiling
Cancer
Middle Aged
Prognosis
medicine.disease
Phenotype
Neoadjuvant Therapy
030104 developmental biology
Receptors, Estrogen
Oncology
030220 oncology & carcinogenesis
Cancer research
Female
Signal transduction
Signal Transduction
Subjects
Details
- ISSN :
- 15573265 and 10780432
- Volume :
- 22
- Database :
- OpenAIRE
- Journal :
- Clinical Cancer Research
- Accession number :
- edsair.doi.dedup.....69cc48385d07a7ca907e75cbe8ec8c86
- Full Text :
- https://doi.org/10.1158/1078-0432.ccr-16-0471