Back to Search
Start Over
Rapid intensification of an established CHO cell fed-batch process
- Source :
- Biotechnology progress, e3213, Biotechnology Progress 38 (2022) 1, Biotechnology Progress, 38(1)
- Publication Year :
- 2021
- Publisher :
- Wiley, 2021.
-
Abstract
- Currently, the mammalian biomanufacturing industry explores process intensification (PI) to meet upcoming demands of biotherapeutics while keeping production flexible but, more importantly, as economic as possible. However, intensified processes often require more development time compared with conventional fed-batches (FBs) preventing their implementation. Hence, rapid and efficient, yet straightforward strategies for PI are needed. In this study we demonstrate such a strategy for the intensification of an N-stage FB by implementing N-1 perfusion cell culture and high inoculum cell densities resulting in a robust intensified FB (iFB). Furthermore, we show successful combination of such an iFB with the addition of productivity enhancers, which has not been reported so far. The conventional CHO cell FB process was step-wise improved and intensified rapidly in multi-parallel small-scale bioreactors using N-1 perfusion. The iFBs were performed in 15 and 250 ml bioreactors and allowed to evaluate the impact on key process indicators (KPI): the space–time yield (STY) was successfully doubled from 0.28 to 0.55 g/L d, while product quality was maintained. This gain was generated by initially increasing the inoculation density, thus shrinking process time, and second supplementation with butyric acid (BA), which reduced cell growth and enhanced cell-specific productivity from ~25 to 37 pg/(cell d). Potential impacts of PI on cell metabolism were evaluated using flux balance analysis. Initial metabolic differences between the standard and intensified process were observed but disappeared quickly. This shows that PI can be achieved rapidly for new as well as existing processes without introducing sustained changes in cellular and metabolic behavior.
- Subjects :
- Bio Process Engineering
Cell Count
CHO Cells
N-1 perfusion
Bioreactors
Cricetulus
Cricetinae
Bioreactor
process intensification
Animals
Biomanufacturing
Food science
CHO cell culture
VLAG
Chemistry
Cell growth
Teknologi: 500::Medisinsk teknologi: 620 [VDP]
Chinese hamster ovary cell
Rapid intensification
Matematikk og Naturvitenskap: 400::Basale biofag: 470::Molekylærbiologi: 473 [VDP]
Flux balance analysis
Batch Cell Culture Techniques
intensified fed-batch
Batch processing
Teknologi: 500::Bioteknologi: 590 [VDP]
Process time
butyric acid
Biotechnology
Subjects
Details
- Language :
- English
- ISSN :
- 87567938
- Database :
- OpenAIRE
- Journal :
- Biotechnology progress, e3213, Biotechnology Progress 38 (2022) 1, Biotechnology Progress, 38(1)
- Accession number :
- edsair.doi.dedup.....69b8d15afac03596837d1a18eef3ecec