Back to Search Start Over

RTNI—A symbolic integrator for Haar-random tensor networks

Authors :
Motohisa Fukuda
Ion Nechita
Robert König
Laboratoire de Physique Théorique (LPT)
Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC)
Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3)
Source :
J.Phys.A, J.Phys.A, 2019, 52 (42), pp.425303. ⟨10.1088/1751-8121/ab434b⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

We provide a computer algebra package called Random Tensor Network Integrator (RTNI). It allows to compute averages of tensor networks containing multiple Haar-distributed random unitary matrices and deterministic symbolic tensors. Such tensor networks are represented as multigraphs, with vertices corresponding to tensors or random unitaries and edges corresponding to tensor contractions. Input and output spaces of random unitaries may be subdivided into arbitrary tensor factors, with dimensions treated symbolically. The algorithm implements the graphical Weingarten calculus and produces a weighted sum of tensor networks representing the average over the unitary group. We illustrate the use of this algorithmic tool on some examples from quantum information theory, including entropy calculations for random tensor network states as considered in toy models for holographic duality. Mathematica and Python implementations are supplied.<br />Comment: Code available (for Mathematica and python) at https://github.com/MotohisaFukuda/RTNI

Details

Language :
English
Database :
OpenAIRE
Journal :
J.Phys.A, J.Phys.A, 2019, 52 (42), pp.425303. ⟨10.1088/1751-8121/ab434b⟩
Accession number :
edsair.doi.dedup.....69af06e0067c658f184270291dca4a02
Full Text :
https://doi.org/10.1088/1751-8121/ab434b⟩