Back to Search Start Over

Low-frequency photospheric and wind variability in the early-B supergiant HD 2905

Authors :
Frank Grundahl
I. Camacho
Victoria Antoci
P. L. Pallé
Conny Aerts
Miguel A. Urbaneja
M. Fredslund Andersen
Sergio Simón-Díaz
Source :
Astronomy & Astrophysics, 612, 1-11, Astronomy & Astrophysics, 612, pp. 1-11, Simon-Diaz, S, Aerts, C, Urbaneja, M A, Camacho, I, Antoci, V, Andersen, M F, Grundahl, F & Palle, P L 2018, ' Low-frequency photospheric and wind variability in the early-B supergiant HD2905 ', Astronomy & Astrophysics, vol. 612, 40 . https://doi.org/10.1051/0004-6361/201732160, Astronomy & Astrophysics, NASA Astrophysics Data System
Publication Year :
2017

Abstract

Despite the important advances in space asteroseismology during the last decade, the early phases of evolution of stars with masses above $\sim$15 M$_{\odot}$ have been only vaguely explored up to now. Our goal is to detect, analyze and interpret variability in the early-B type supergiant HD\,2905 using long-term, ground based, high resolution spectroscopy. We gather a total of 1141 high-resolution spectra covering some 2900 days. We complement these observations with the $Hipparcos$ light curve, which includes 160 data points obtained during a time span of $\sim$1200 days. We investigate spectroscopic variability of up to 12 diagnostic lines by using the zero and first moments of the line profiles. We perform a frequency analysis of both the spectroscopic and photometric dataset. HD\,2905 is a spectroscopic variable with peak-to-peak amplitudes in the zero and first moments of the photospheric lines of up to 15\% and 30 \kms, respectively. The amplitude of the line-profile variability is correlated with the line formation depth in the photosphere and wind. All investigated lines present complex temporal behavior indicative of multi-periodic variability with timescales of a few days to several weeks. The Scargle periodograms of the {\it Hipparcos\} light curve and the first moment of purely photospheric lines reveal a low-frequency amplitude excess and a clear dominant frequency at $\sim$0.37 d$^{-1}$. In the spectroscopy, several additional frequencies are present in the range 0.1 - 0.4 d$^{-1}$. These may be associated with heat-driven gravity modes, convectively-driven gravity waves, or sub-surface convective motions. Additional frequencies are detected below 0.1 d$^{-1}$. In the particular case of H$\alpha$, these are produced by rotational modulation of a non-spherically symmetric stellar wind.<br />Comment: Accepted for publication in A&A. 13 figures, 2 tables

Details

Language :
English
ISSN :
14320746
Database :
OpenAIRE
Journal :
Astronomy & Astrophysics, 612, 1-11, Astronomy & Astrophysics, 612, pp. 1-11, Simon-Diaz, S, Aerts, C, Urbaneja, M A, Camacho, I, Antoci, V, Andersen, M F, Grundahl, F & Palle, P L 2018, ' Low-frequency photospheric and wind variability in the early-B supergiant HD2905 ', Astronomy & Astrophysics, vol. 612, 40 . https://doi.org/10.1051/0004-6361/201732160, Astronomy & Astrophysics, NASA Astrophysics Data System
Accession number :
edsair.doi.dedup.....6949c1d1f8ada92c48471a8e919efe77
Full Text :
https://doi.org/10.1051/0004-6361/201732160