Back to Search Start Over

A Study of Moist Air Condensation Characteristics in a Transonic Flow System

Authors :
Hongfang Gu
Jie Wang
Source :
Energies, Volume 14, Issue 13, Energies, Vol 14, Iss 4052, p 4052 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

When water vapor in moist air reaches supersaturation in a transonic flow system, non-equilibrium condensation forms a large number of droplets which may adversely affect the operation of some thermal-hydraulic equipment. For a better understanding of this non-equilibrium condensing phenomenon, a numerical model is applied to analyze moist air condensation in a transonic flow system by using the theory of nucleation and droplet growth. The Benson model is adopted to correct the liquid-plane surface tension equation for realistic results. The results show that the distributions of pressure, temperature and Mach number in moist air are significantly different from those in dry air. The dry air model exaggerates the Mach number by 19% and reduces both the pressure and the temperature by 34% at the nozzle exit as compared with the moist air model. At a Laval nozzle, for example, the nucleation rate, droplet number and condensation rate increase significantly with increasing relative humidity. The results also reveal the fact that the number of condensate droplets increases rapidly when moist air reaches 60% relative humidity. These findings provide a fundamental approach to account for the effect of condensate droplet formation on moist gas in a transonic flow system.

Details

ISSN :
19961073
Volume :
14
Database :
OpenAIRE
Journal :
Energies
Accession number :
edsair.doi.dedup.....68fe7ad435226dfc8f8b00b7563ca5cb