Back to Search Start Over

The Spatiotemporal Interplay of Regularity and Randomness in Cellular Data Traffic

Authors :
Sahar Hoteit
Guangshuo Chen
Aline Carneiro Viana
Marco Fiore
Carlos Sarraute
INFormation NEtworks (INFINE)
Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Laboratoire des signaux et systèmes (L2S)
Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni (IEIIT)
Consiglio Nazionale delle Ricerche (CNR)
Grandata [Buenos Aires]
National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR)
Source :
LCN, LCN 2017-The 42nd IEEE Conference on Local Computer Networks, LCN 2017-The 42nd IEEE Conference on Local Computer Networks, Oct 2017, Singapore, Singapore. ⟨10.1109/lcn.2017.41⟩
Publication Year :
2017
Publisher :
IEEE, 2017.

Abstract

(6-page paper); International audience; In this paper, we leverage two large-scale real-worlddatasets to provide the first results on the limits of predictabilityof cellular data traffic demands generated by individual usersover time and space. Using information theory tools, we measurethe maximum predictability that any algorithm has potential toachieve. We first focus on the predictability of mobile trafficconsumption patterns in isolation. Our results show that it istheoretically possible to anticipate the individual demand witha typical accuracy of 85% and reveal that this percentage isconsistent across all user types. Then, we analyze the jointpredictability of the traffic demands and mobility patterns. Wefind that the two dimensions are correlated, which improves thepredictability upper bound to 90% on average.

Details

Database :
OpenAIRE
Journal :
2017 IEEE 42nd Conference on Local Computer Networks (LCN)
Accession number :
edsair.doi.dedup.....68c14c13958cc201b84de1f2b9bb6301