Back to Search
Start Over
Nondegeneracy of Ground States and Multiple Semiclassical Solutions of the Hartree Equation for General Dimensions
- Source :
- Results in Mathematics. 76
- Publication Year :
- 2021
- Publisher :
- Springer Science and Business Media LLC, 2021.
-
Abstract
- We study nondegeneracy of ground states of the Hartree equation $$ -\Delta u+u=(I_{2}\ast u^2)u\quad\mbox{ in }\mathbb R^n $$ where $n=3,4,5$ and $I_2$ is the Newton potential. As an application of the nondegeneracy result, we use a Lyapunov-Schmidt reduction argument to construct multiple semiclassical solutions to the following Hartree equation with an external potential $$-\varepsilon^2\Delta u+u+V(x)u=\varepsilon^{-2}(I_{2}\ast u^2)u\quad \mbox{ in }\mathbb R^n.$$<br />Comment: The multipole expansion section is revised. Some refrefeces updated
- Subjects :
- Reduction (recursion theory)
Newtonian potential
Mathematics::Commutative Algebra
Applied Mathematics
010102 general mathematics
Semiclassical physics
01 natural sciences
010101 applied mathematics
Mathematics - Analysis of PDEs
Mathematics (miscellaneous)
Hartree equation
FOS: Mathematics
0101 mathematics
Analysis of PDEs (math.AP)
Mathematics
Mathematical physics
Subjects
Details
- ISSN :
- 14209012 and 14226383
- Volume :
- 76
- Database :
- OpenAIRE
- Journal :
- Results in Mathematics
- Accession number :
- edsair.doi.dedup.....68bd47450c0aa73e1802653e1deeb1f1
- Full Text :
- https://doi.org/10.1007/s00025-020-01332-y