Back to Search
Start Over
Using Microemulsion Phase Behavior as a Predictive Model for Lecithin–Tween 80 Marine Oil Dispersant Effectiveness
- Source :
- Langmuir. 37:8115-8128
- Publication Year :
- 2021
- Publisher :
- American Chemical Society (ACS), 2021.
-
Abstract
- Marine oil dispersants typically contain blends of surfactants dissolved in solvents. When introduced to the crude oil-seawater interface, dispersants facilitate the breakup of crude oil into droplets that can disperse in the water column. Recently, questions about the environmental persistence and toxicity of commercial dispersants have led to the development of "greener" dispersants consisting solely of food-grade surfactants such as l-α-phosphatidylcholine (lecithin, L) and polyoxyethylenated sorbitan monooleate (Tween 80, T). Individually, neither L nor T is effective at dispersing crude oil, but mixtures of the two (LT blends) work synergistically to ensure effective dispersion. The reasons for this synergy remain unexplained. More broadly, an unresolved challenge is to be able to predict whether a given surfactant (or a blend) can serve as an effective dispersant. Herein, we investigate whether the LT dispersant effectiveness can be correlated with thermodynamic phase behavior in model systems. Specifically, we study ternary "DOW" systems comprising LT dispersant (D) + a model oil (hexadecane, O) + synthetic seawater (W), with the D formulation being systematically varied (across 0:100, 20:80, 40:60, 60:40, 80:20, and 100:0 L:T weight ratios). We find that the most effective LT dispersants (60:40 and 80:20 L:T) induce broad Winsor III microemulsion regions in the DOW phase diagrams (Winsor III implies that the microemulsion coexists with aqueous and oil phases). This correlation is generally consistent with expectations from hydrophilic-lipophilic deviation (HLD) calculations, but specific exceptions are seen. This study then outlines a protocol that allows the phase behavior to be observed on short time scales (ca. hours) and provides a set of guidelines to interpret the results. The complementary use of HLD calculations and the outlined fast protocol are expected to be used as a predictive model for effective dispersant blends, providing a tool to guide the efficient formulation of future marine oil dispersants.
- Subjects :
- Polysorbates
02 engineering and technology
Hexadecane
010402 general chemistry
01 natural sciences
Dispersant
Surface-Active Agents
chemistry.chemical_compound
Phase (matter)
Lecithins
Electrochemistry
Petroleum Pollution
General Materials Science
Oil dispersants
Microemulsion
Spectroscopy
Chemistry
Surfaces and Interfaces
021001 nanoscience & nanotechnology
Condensed Matter Physics
0104 chemical sciences
Petroleum
Chemical engineering
0210 nano-technology
Dispersion (chemistry)
Water Pollutants, Chemical
Subjects
Details
- ISSN :
- 15205827 and 07437463
- Volume :
- 37
- Database :
- OpenAIRE
- Journal :
- Langmuir
- Accession number :
- edsair.doi.dedup.....6892b88c685f6c02fc2242d36e8f77e2
- Full Text :
- https://doi.org/10.1021/acs.langmuir.1c00651