Back to Search Start Over

Natural language processing and machine learning to identify alcohol misuse from the electronic health record in trauma patients: development and internal validation

Authors :
Daniel To
Richard P. Gonzalez
Andrew Phillips
Dmitriy Dligach
Richard S. Cooper
Ron Price
Majid Afshar
Niranjan S. Karnik
Jeanne Mueller
Cara Joyce
Publication Year :
2023
Publisher :
University of Illinois at Chicago, 2023.

Abstract

ObjectiveAlcohol misuse is present in over a quarter of trauma patients. Information in the clinical notes of the electronic health record of trauma patients may be used for phenotyping tasks with natural language processing (NLP) and supervised machine learning. The objective of this study is to train and validate an NLP classifier for identifying patients with alcohol misuse.Materials and MethodsAn observational cohort of 1422 adult patients admitted to a trauma center between April 2013 and November 2016. Linguistic processing of clinical notes was performed using the clinical Text Analysis and Knowledge Extraction System. The primary analysis was the binary classification of alcohol misuse. The Alcohol Use Disorders Identification Test served as the reference standard.ResultsThe data corpus comprised 91 045 electronic health record notes and 16 091 features. In the final machine learning classifier, 16 features were selected from the first 24 hours of notes for identifying alcohol misuse. The classifier’s performance in the validation cohort had an area under the receiver-operating characteristic curve of 0.78 (95% confidence interval [CI], 0.72 to 0.85). Sensitivity and specificity were at 56.0% (95% CI, 44.1% to 68.0%) and 88.9% (95% CI, 84.4% to 92.8%). The Hosmer-Lemeshow goodness-of-fit test demonstrates the classifier fits the data well (P = .17). A simpler rule-based keyword approach had a decrease in sensitivity when compared with the NLP classifier from 56.0% to 18.2%.ConclusionsThe NLP classifier has adequate predictive validity for identifying alcohol misuse in trauma centers. External validation is needed before its application to augment screening.

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....6877d559c0b9dc5e8342012279b4f400
Full Text :
https://doi.org/10.25417/uic.22512502.v1