Back to Search
Start Over
Natural language processing and machine learning to identify alcohol misuse from the electronic health record in trauma patients: development and internal validation
- Publication Year :
- 2023
- Publisher :
- University of Illinois at Chicago, 2023.
-
Abstract
- ObjectiveAlcohol misuse is present in over a quarter of trauma patients. Information in the clinical notes of the electronic health record of trauma patients may be used for phenotyping tasks with natural language processing (NLP) and supervised machine learning. The objective of this study is to train and validate an NLP classifier for identifying patients with alcohol misuse.Materials and MethodsAn observational cohort of 1422 adult patients admitted to a trauma center between April 2013 and November 2016. Linguistic processing of clinical notes was performed using the clinical Text Analysis and Knowledge Extraction System. The primary analysis was the binary classification of alcohol misuse. The Alcohol Use Disorders Identification Test served as the reference standard.ResultsThe data corpus comprised 91 045 electronic health record notes and 16 091 features. In the final machine learning classifier, 16 features were selected from the first 24 hours of notes for identifying alcohol misuse. The classifier’s performance in the validation cohort had an area under the receiver-operating characteristic curve of 0.78 (95% confidence interval [CI], 0.72 to 0.85). Sensitivity and specificity were at 56.0% (95% CI, 44.1% to 68.0%) and 88.9% (95% CI, 84.4% to 92.8%). The Hosmer-Lemeshow goodness-of-fit test demonstrates the classifier fits the data well (P = .17). A simpler rule-based keyword approach had a decrease in sensitivity when compared with the NLP classifier from 56.0% to 18.2%.ConclusionsThe NLP classifier has adequate predictive validity for identifying alcohol misuse in trauma centers. External validation is needed before its application to augment screening.
- Subjects :
- Predictive validity
Adult
Male
Health Informatics
computer.software_genre
Machine learning
Research and Applications
Cohort Studies
Machine Learning
03 medical and health sciences
0302 clinical medicine
Trauma Centers
Medicine
Electronic Health Records
Humans
030212 general & internal medicine
Natural Language Processing
Uncategorized
Learning classifier system
Alcohol Use Disorders Identification Test
business.industry
Trauma center
Middle Aged
Alcoholism
Binary classification
ROC Curve
Cohort
Wounds and Injuries
Female
Artificial intelligence
business
computer
Classifier (UML)
030217 neurology & neurosurgery
Natural language processing
Cohort study
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....6877d559c0b9dc5e8342012279b4f400
- Full Text :
- https://doi.org/10.25417/uic.22512502.v1