Back to Search Start Over

Generation of Powerful Tungsten Reductants by Visible Light Excitation

Authors :
James D. Blakemore
James W. Thackeray
Paul J. LaBeaume
Jay R. Winkler
Harry B. Gray
Maraia E. Ener
Wesley Sattler
Aaron A. Rachford
James F. Cameron
Source :
Journal of the American Chemical Society. 135:10614-10617
Publication Year :
2013
Publisher :
American Chemical Society (ACS), 2013.

Abstract

The homoleptic arylisocyanide tungsten complexes, W(CNXy)_6 and W(CNIph)_6 (Xy = 2,6-dimethylphenyl, Iph = 2,6-diisopropylphenyl), display intense metal to ligand charge transfer (MLCT) absorptions in the visible region (400–550 nm). MLCT emission (λ_max ≈ 580 nm) in tetrahydrofuran (THF) solution at rt is observed for W(CNXy)6 and W(CNIph)_6 with lifetimes of 17 and 73 ns, respectively. Diffusion-controlled energy transfer from electronically excited W(CNIph)_6 (*W) to the lowest energy triplet excited state of anthracene (anth) is the dominant quenching pathway in THF solution. Introduction of tetrabutylammonium hexafluorophosphate, [Bun4N][PF_6], to the THF solution promotes formation of electron transfer (ET) quenching products, [W(CNIph)6]+ and [anth]^•–. ET from *W to benzophenone and cobalticenium also is observed in [Bun4N][PF6]/THF solutions. The estimated reduction potential for the [W(CNIph)6]^(+)/*W couple is −2.8 V vs Cp_(2)Fe^(+/0), establishing W(CNIph)_6 as one of the most powerful photoreductants that has been generated with visible light.

Details

ISSN :
15205126 and 00027863
Volume :
135
Database :
OpenAIRE
Journal :
Journal of the American Chemical Society
Accession number :
edsair.doi.dedup.....686ae133d215e6960d4515612a0a4bd1
Full Text :
https://doi.org/10.1021/ja4047119