Back to Search
Start Over
Generation of Powerful Tungsten Reductants by Visible Light Excitation
- Source :
- Journal of the American Chemical Society. 135:10614-10617
- Publication Year :
- 2013
- Publisher :
- American Chemical Society (ACS), 2013.
-
Abstract
- The homoleptic arylisocyanide tungsten complexes, W(CNXy)_6 and W(CNIph)_6 (Xy = 2,6-dimethylphenyl, Iph = 2,6-diisopropylphenyl), display intense metal to ligand charge transfer (MLCT) absorptions in the visible region (400–550 nm). MLCT emission (λ_max ≈ 580 nm) in tetrahydrofuran (THF) solution at rt is observed for W(CNXy)6 and W(CNIph)_6 with lifetimes of 17 and 73 ns, respectively. Diffusion-controlled energy transfer from electronically excited W(CNIph)_6 (*W) to the lowest energy triplet excited state of anthracene (anth) is the dominant quenching pathway in THF solution. Introduction of tetrabutylammonium hexafluorophosphate, [Bun4N][PF_6], to the THF solution promotes formation of electron transfer (ET) quenching products, [W(CNIph)6]+ and [anth]^•–. ET from *W to benzophenone and cobalticenium also is observed in [Bun4N][PF6]/THF solutions. The estimated reduction potential for the [W(CNIph)6]^(+)/*W couple is −2.8 V vs Cp_(2)Fe^(+/0), establishing W(CNIph)_6 as one of the most powerful photoreductants that has been generated with visible light.
Details
- ISSN :
- 15205126 and 00027863
- Volume :
- 135
- Database :
- OpenAIRE
- Journal :
- Journal of the American Chemical Society
- Accession number :
- edsair.doi.dedup.....686ae133d215e6960d4515612a0a4bd1
- Full Text :
- https://doi.org/10.1021/ja4047119