Back to Search Start Over

Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection

Authors :
Ge Yanhao
Chengjie Wang
Zhenyu Zhang
Renwang Chen
Jian Yang
Feiyue Huang
Yan Yan
Jilin Li
Ying Tai
Source :
CVPR
Publication Year :
2021
Publisher :
IEEE, 2021.

Abstract

Non-parametric face modeling aims to reconstruct 3D face only from images without shape assumptions. While plausible facial details are predicted, the models tend to over-depend on local color appearance and suffer from ambiguous noise. To address such problem, this paper presents a novel Learning to Aggregate and Personalize (LAP) framework for unsupervised robust 3D face modeling. Instead of using controlled environment, the proposed method implicitly disentangles ID-consistent and scene-specific face from unconstrained photo set. Specifically, to learn ID-consistent face, LAP adaptively aggregates intrinsic face factors of an identity based on a novel curriculum learning approach with relaxed consistency loss. To adapt the face for a personalized scene, we propose a novel attribute-refining network to modify ID-consistent face with target attribute and details. Based on the proposed method, we make unsupervised 3D face modeling benefit from meaningful image facial structure and possibly higher resolutions. Extensive experiments on benchmarks show LAP recovers superior or competitive face shape and texture, compared with state-of-the-art (SOTA) methods with or without prior and supervision.<br />Comment: CVPR 2021 Oral, 11 pages, 9 figures

Details

Database :
OpenAIRE
Journal :
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Accession number :
edsair.doi.dedup.....6858a6a1afda7ab51a17eca670c5d987