Back to Search
Start Over
Multisourced metals enriched by magmatic-hydrothermal fluids in stratabound deposits of the Middle–Lower Yangtze River metallogenic belt, China
- Source :
- Geology, 2018, Vol.46(5), pp.391-394 [Peer Reviewed Journal]
- Publication Year :
- 2018
- Publisher :
- Geological Society of America, 2018.
-
Abstract
- Stratabound deposits within late Carboniferous carbonate units in the Middle–Lower Yangtze River metallogenic belt are important copper producers in China. Hitherto, the genesis of these deposits has been debated, due to poor constraints regarding the timing and source of the mineralization. Proposed models include a late Carboniferous seafloor exhalative formation (SEDEX), or an Early Cretaceous magmatic-hydrothermal origin. These models imply different metal sources (basinal vs. magmatic fluid, respectively) and would require different exploration strategies. New pyrite Re-Os and trace-element results from the representative Xinqiao Cu-S-Fe-Au deposit favor a Cretaceous (ca. 138 Ma) magmatic-hydrothermal genesis over a SEDEX origin. The distinct initial 187Os/188Os compositions (Osi) of different pyrite types (colloform Osi = 1.35 and euhedral grains Osi = 0.79), coupled with the pyrite trace-element abundance, indicate that the Os, and by inference other metals (e.g., Cu, Ag, Au), was sourced from a Cretaceous magmatic-hydrothermal system (Osi = 0.74) and Late Permian metalliferous black shales (Osi = 7.56 ± 3.76). In addition, the genesis of Au-bearing stockwork pyrite veins hosted by the Carboniferous sandstone is best explained by the leaching of existing mineralization (e.g., porphyry Au-Mo) by Early Cretaceous magmatic-hydrothermal fluids. This is implied by the lack of common Os, high Re abundances (0.1–3.7 ppm), and highly variable Re-Os model ages (379 and 173 Ma), which are positively correlated with Re and total abundances of Co, Ni, Ag, Au, Tl, and Ba. This study highlights the importance of recycling of multisourced metals (sedimentary and existing mineralization) in the formation of intrusion-related stratabound deposits. Furthermore, it demonstrates the importance of integrating information regarding the source and timing of mineralization within a well-defined geological framework, which can yield information about the ore-forming processes and help to guide mineral exploration.
- Subjects :
- Stockwork
Mineralization (geology)
Permian
Geochemistry
Geology
engineering.material
010502 geochemistry & geophysics
01 natural sciences
Cretaceous
chemistry.chemical_compound
chemistry
Carboniferous
engineering
Carbonate
Sedimentary rock
Pyrite
010503 geology
0105 earth and related environmental sciences
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Geology, 2018, Vol.46(5), pp.391-394 [Peer Reviewed Journal]
- Accession number :
- edsair.doi.dedup.....6856cac7864c156b39994eb50b1c40ee
- Full Text :
- https://doi.org/10.1130/g39995.1