Back to Search Start Over

Statistical analysis of self-similar conservative fragmentation chains

Authors :
Marc Hoffmann
Nathalie Krell
Laboratoire d'Analyse et de Mathématiques Appliquées ( LAMA )
Université Paris-Est Marne-la-Vallée ( UPEM ) -Fédération de Recherche Bézout-Université Paris-Est Créteil Val-de-Marne - Paris 12 ( UPEC UP12 ) -Centre National de la Recherche Scientifique ( CNRS )
Laboratoire de Probabilités et Modèles Aléatoires ( LPMA )
Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS )
Institut de Recherche Mathématique de Rennes ( IRMAR )
Université de Rennes 1 ( UR1 )
Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 )
Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS )
Laboratoire d'Analyse et de Mathématiques Appliquées (LAMA)
Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Fédération de Recherche Bézout-Université Paris-Est Marne-la-Vallée (UPEM)
Laboratoire de Probabilités et Modèles Aléatoires (LPMA)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC)
Institut de Recherche Mathématique de Rennes (IRMAR)
Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2)
Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-INSTITUT AGRO Agrocampus Ouest
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
Université Paris-Est Marne-la-Vallée (UPEM)-Fédération de Recherche Bézout-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest
AGROCAMPUS OUEST
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-AGROCAMPUS OUEST-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)
Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)
Source :
Bernoulli, Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2011, 17 (1), pp.395-423, Bernoulli, 2011, 17 (1), pp.395-423, Bernoulli 17, no. 1 (2011), 395-423
Publication Year :
2011
Publisher :
HAL CCSD, 2011.

Abstract

We explore statistical inference in self-similar conservative fragmentation chains when only approximate observations of the sizes of the fragments below a given threshold are available. This framework, introduced by Bertoin and Martinez [Adv. Appl. Probab. 37 (2005) 553--570], is motivated by mineral crushing in the mining industry. The underlying object that can be identified from the data is the step distribution of the random walk associated with a randomly tagged fragment that evolves along the genealogical tree representation of the fragmentation process. We compute upper and lower rates of estimation in a parametric framework and show that in the nonparametric case, the difficulty of the estimation is comparable to ill-posed linear inverse problems of order 1 in signal denoising.<br />Published in at http://dx.doi.org/10.3150/10-BEJ274 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm)

Details

Language :
English
ISSN :
13507265
Database :
OpenAIRE
Journal :
Bernoulli, Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2011, 17 (1), pp.395-423, Bernoulli, 2011, 17 (1), pp.395-423, Bernoulli 17, no. 1 (2011), 395-423
Accession number :
edsair.doi.dedup.....6845a71efce2baed7a5be00dcd1baad6