Back to Search
Start Over
An information theoretic framework for image segmentation
- Source :
- © International Conference on Image Processing, 2004, vol. 2, p. 1193-1196, Articles publicats (D-IMA), DUGiDocs – Universitat de Girona, instname, Scopus-Elsevier, ICIP, Recercat. Dipósit de la Recerca de Catalunya
- Publication Year :
- 2004
- Publisher :
- IEEE, 2004.
-
Abstract
- In this paper, an information theoretic framework for image segmentation is presented. This approach is based on the information channel that goes from the image intensity histogram to the regions of the partitioned image. It allows us to define a new family of segmentation methods which maximize the mutual information of the channel. Firstly, a greedy top-down algorithm which partitions an image into homogeneous regions is introduced. Secondly, a histogram quantization algorithm which clusters color bins in a greedy bottom-up way is defined. Finally, the resulting regions in the partitioning algorithm can optionally be merged using the quantized histogram.
- Subjects :
- Segmentation-based object categorization
business.industry
Histogram matching
ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
Scale-space segmentation
Pattern recognition
Image segmentation
Imatges -- Processament
Computer algorithms
Imatges -- Segmentació
Image texture
Imaging segmentation
Image processing
Region growing
Computer Science::Computer Vision and Pattern Recognition
Algorismes computacionals
Artificial intelligence
Range segmentation
business
Image histogram
Mathematics
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- © International Conference on Image Processing, 2004, vol. 2, p. 1193-1196, Articles publicats (D-IMA), DUGiDocs – Universitat de Girona, instname, Scopus-Elsevier, ICIP, Recercat. Dipósit de la Recerca de Catalunya
- Accession number :
- edsair.doi.dedup.....683fbf64cad7da754d7201ec9e482335