Back to Search Start Over

An information theoretic framework for image segmentation

Authors :
S. Sbert
Miquel Feixas
Jaume Rigau
Source :
© International Conference on Image Processing, 2004, vol. 2, p. 1193-1196, Articles publicats (D-IMA), DUGiDocs – Universitat de Girona, instname, Scopus-Elsevier, ICIP, Recercat. Dipósit de la Recerca de Catalunya
Publication Year :
2004
Publisher :
IEEE, 2004.

Abstract

In this paper, an information theoretic framework for image segmentation is presented. This approach is based on the information channel that goes from the image intensity histogram to the regions of the partitioned image. It allows us to define a new family of segmentation methods which maximize the mutual information of the channel. Firstly, a greedy top-down algorithm which partitions an image into homogeneous regions is introduced. Secondly, a histogram quantization algorithm which clusters color bins in a greedy bottom-up way is defined. Finally, the resulting regions in the partitioning algorithm can optionally be merged using the quantized histogram.

Details

Database :
OpenAIRE
Journal :
© International Conference on Image Processing, 2004, vol. 2, p. 1193-1196, Articles publicats (D-IMA), DUGiDocs – Universitat de Girona, instname, Scopus-Elsevier, ICIP, Recercat. Dipósit de la Recerca de Catalunya
Accession number :
edsair.doi.dedup.....683fbf64cad7da754d7201ec9e482335