Back to Search
Start Over
On the Feasibility of Imaging Carbonatite-Hosted Rare Earth Element Deposits Using Remote Sensing
- Source :
- Neave, D A, Black, M, Riley, T R, Gibson, S A, Ferrier, G, Wall, F & Broom-Fendley, S 2016, ' On the feasibility of imaging carbonatite-hosted rare earth element deposits using remote sensing ', Economic Geology, vol. 111, no. 3, pp. 641-665 . https://doi.org/10.2113/econgeo.111.3.641, Economic Geology 111 (2016), Nr. 3
- Publication Year :
- 2016
- Publisher :
- Society of Economic Geologists, 2016.
-
Abstract
- Rare earth elements (REEs) generate characteristic absorption features in visible to shortwave infrared (VNIRSWIR) reflectance spectra. Neodymium (Nd) has among the most prominent absorption features of the REEs and thus represents a key pathfinder element for the REEs as a whole. Given that the world's largest REE deposits are associated with carbonatites, we present spectral, petrographic, and geochemical data from a predominantly carbonatitic suite of rocks that we use to assess the feasibility of imaging REE deposits using remote sensing. Samples were selected to cover a wide range of extents and styles of REE mineralization, and encompass calcio-, ferro-and magnesio-carbonatites. REE ores from the Bayan Obo (China) and Mountain Pass (United States) mines, as well as REE-rich alkaline rocks from the Motzfeldt and Ilímaussaq intrusions in Greenland, were also included in the sample suite. The depth and area of Nd absorption features in spectra collected under laboratory conditions correlate positively with the Nd content of whole-rock samples. The wavelength of Nd absorption features is predominantly independent of sample lithology and mineralogy. Correlations are most reliable for the two absorption features centered at ∼744 and ∼802 nm that can be observed in samples containing as little as ∼1,000 ppm Nd. By convolving laboratory spectra to the spectral response functions of a variety of remote sensing instruments we demonstrate that hyperspectral instruments with capabilities equivalent to the operational Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) and planned Environmental Mapping and Analysis Program (EnMAP) systems have the spectral resolutions necessary to detect Nd absorption features, especially in high-grade samples with economically relevant REE accumulations (Nd> 30,000 ppm). Adding synthetic noise to convolved spectra indicates that correlations between Nd absorption area and whole-rock Nd content only remain robust when spectra have signal-to-noise ratios in excess of ∼250:1. Although atmospheric interferences are modest across the wavelength intervals relevant for Nd detection, most REE-rich outcrops are too small to be detectable using satellite-based platforms with>30-m spatial resolutions. However, our results indicate that Nd absorption features should be identifiable in high-quality, airborne, hyperspectral datasets collected at meter-scale spatial resolutions. Future deployment of hyperspec-tral instruments on unmanned aerial vehicles could enable REE grade to be mapped at the centimeter scale across whole deposits. University of Cambridge Higher Education Innovation Funding (HEIF) Natural Environment Research Council (NERC)
- Subjects :
- 010504 meteorology & atmospheric sciences
data acquisition
Hyperspectral instrument
Greenland
Multispectral image
Imaging spectrometer
sub-05
010502 geochemistry & geophysics
01 natural sciences
Neodymium
California
Neodymium alloys
remote sensing
Arctic
Rare earths
ddc:550
Rare earth elements
Remote sensing instruments
Infrared spectrometers
Minerals
Photomapping
Signal to noise ratio
Rare-earth element
feasibility study
Hyperspectral imaging
Geology
mineral deposit
rare earth element
Geophysics
Lithology
Thermography (imaging)
Exploratory geochemistry
Heterojunctions
Mountain Pass
Economic Geology
signal-to-noise ratio
Rocks
economic geography
noise
China
Characteristic absorption
reflectance
multispectral
Infrared imaging
Mineralogy
chemistry.chemical_element
Airborne visible infrared imaging spectrometer
Petrography
igneous geochemistry
Geochemistry and Petrology
EnMAP
Airborne visible/infrared imaging spectrometer
Bayan Obo
spatial resolution
Rare earth elements (REEs)
0105 earth and related environmental sciences
Remote sensing
igneous intrusion
imaging method
Environmental mapping
carbonatite
United States
Spectral response functions
Nei Monggol
hyperspectral
chemistry
13. Climate action
Deposits
Laboratory conditions
absorption
Subjects
Details
- ISSN :
- 15540774 and 03610128
- Volume :
- 111
- Database :
- OpenAIRE
- Journal :
- Economic Geology
- Accession number :
- edsair.doi.dedup.....682171d72d7d21b2e5d6581e48db0afd
- Full Text :
- https://doi.org/10.2113/econgeo.111.3.641