Back to Search Start Over

Breakdown of liquids in long gaps: influence of distance, impulse shape, liquid nature, and interpretation of measurements

Authors :
Olivier Lesaint
F. Mc Cluskey
André Denat
Laboratoire de Génie Electrique de Grenoble (G2ELab)
Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)
Laboratoire des Écoulements Géophysiques et Industriels [Grenoble] (LEGI)
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
Source :
IEEE Transactions on Dielectrics and Electrical Insulation, IEEE Transactions on Dielectrics and Electrical Insulation, Institute of Electrical and Electronics Engineers, 2015, 22 (5), pp.2581--2591. ⟨10.1109/TDEI.2015.005217⟩
Publication Year :
2015
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2015.

Abstract

International audience; Breakdown measurements are carried out in liquids under point-sphere and pointplane electrode geometries, over a large range of gap distances up to 35 cm. Non-polar hydrocarbon liquids with different chemical structures are studied: saturated, aromatic, polyaromatic, mineral oils, and ester. Two high voltage impulse shapes are used: the standard lightning impulse (LI), and a specific “step” impulse (ST). Step impulses are favorable to interpret breakdown measurements since the applied voltage remains constant while prebreakdown streamers propagate. Conversely, with lightning impulse and long gaps the propagation of streamers with a low propagation velocity (a few km/s) is quenched due to the rapidly decaying voltage. In this case, breakdown can result only from the propagation of faster streamers, which appear in very different conditions according to the liquid nature. The results obtained allow us to interpret the large variations of breakdown voltage observed in large gaps, when either the high voltage impulse shape or the liquid nature is changed. These results also help to define proper conditions for testing and comparing liquids. Testing with lightning impulse in short gaps, such as in standard tests, does not provides data relevant for very high voltage applications.

Details

ISSN :
10709878
Volume :
22
Database :
OpenAIRE
Journal :
IEEE Transactions on Dielectrics and Electrical Insulation
Accession number :
edsair.doi.dedup.....680e70d13654acc8bed6e468d2e35684
Full Text :
https://doi.org/10.1109/tdei.2015.005217