Back to Search Start Over

An Experimental Evaluation of Similarity-Based and Embedding-Based Link Prediction Methods on Graphs

Authors :
Malika Smaïl-Tabbone
Kamrul Islam
Sabeur Aridhi
Computational Algorithms for Protein Structures and Interactions (CAPSID)
Inria Nancy - Grand Est
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Complex Systems, Artificial Intelligence & Robotics (LORIA - AIS)
Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Source :
International Journal of Data Mining & Knowledge Management Process, International Journal of Data Mining & Knowledge Management Process, 2021, 11, pp.1-18. ⟨10.5121/ijdkp.2021.11501⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; The task of inferring missing links or predicting future ones in a graph based on its current structure is referred to as link prediction. Link prediction methods that are based on pairwise node similarity are well-established approaches in the literature and show good prediction performance in many realworld graphs though they are heuristic. On the other hand, graph embedding approaches learn lowdimensional representation of nodes in graph and are capable of capturing inherent graph features, and thus support the subsequent link prediction task in graph. This paper studies a selection of methods from both categories on several benchmark (homogeneous) graphs with different properties from various domains. Beyond the intra and inter category comparison of the performances of the methods, our aim is also to uncover interesting connections between Graph Neural Network(GNN)based methods and heuristic ones as a means to alleviate the black-box well-known limitation.

Details

Language :
English
ISSN :
2231007X and 22309608
Database :
OpenAIRE
Journal :
International Journal of Data Mining & Knowledge Management Process, International Journal of Data Mining & Knowledge Management Process, 2021, 11, pp.1-18. ⟨10.5121/ijdkp.2021.11501⟩
Accession number :
edsair.doi.dedup.....67f85235f312e1ea725e9c5761302946
Full Text :
https://doi.org/10.5121/ijdkp.2021.11501⟩