Back to Search Start Over

A chromosome-scale assembly of the major African malaria vector Anopheles funestus

Authors :
Seth Redmond
Scott T. Small
Sergey Koren
Paul I. Howell
Nora J. Besansky
Jay Ghurye
Adam M. Phillippy
Source :
GigaScience
Publication Year :
2019
Publisher :
Oxford University Press (OUP), 2019.

Abstract

Background: Anopheles funestus is one of the three most consequential and widespread vectors of human malaria in tropical Africa. However, the lack of a high-quality reference genome has hindered the association of phenotypic traits with their genetic basis in this important mosquito. Findings: Here we present a new high-quality An. funestus reference genome (AfunF3) assembled using 240x coverage of long-read single-molecule sequencing for contigging, combined with 100x coverage of short-read Hi-C data for chromosome scaffolding. The assembled contigs total 446 Mbp of sequence and contain substantial duplication due to alternative alleles present in the sequenced pool of mosquitos from the FUMOZ colony. Using alignment and depth-of-coverage information, these contigs were deduplicated to a 211 Mbp primary assembly, which is closer to the expected haploid genome size of 250 Mbp. This primary assembly consists of 1,053 contigs organized into 3 chromosome-scale scaffolds with an N50 contig size of 632 kbp and an N50 scaffold size of 93.811 Mbp, representing a 100-fold improvement in continuity versus the current reference assembly, AfunF1. Conclusion: This highly contiguous and complete An. funestus reference genome assembly will serve as an improved basis for future studies of genomic variation and organization in this important disease vector.

Details

ISSN :
2047217X
Volume :
8
Database :
OpenAIRE
Journal :
GigaScience
Accession number :
edsair.doi.dedup.....67db644c452388f456ac4ab694092935
Full Text :
https://doi.org/10.1093/gigascience/giz063