Back to Search Start Over

Comparison of Machine Learning Methods to Detect Anomalies in the Activity of Dairy Cows

Authors :
Marie-Madeleine Mialon
Nicolas Wagner
Isabelle Veissier
Romain Lardy
Violaine Antoine
Jonas Koko
Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS)
Ecole Nationale Supérieure des Mines de St Etienne-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
Unité Mixte de Recherche sur les Herbivores - UMR 1213 (UMRH)
VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Source :
Lecture Notes in Computer Science ISBN: 9783030594909, ISMIS, Comparison of Machine Learning Methods to Detect Anomalies in the Activity of Dairy Cows, Comparison of Machine Learning Methods to Detect Anomalies in the Activity of Dairy Cows, pp.342-351, 2020, ⟨10.1007/978-3-030-59491-6_32⟩
Publication Year :
2020
Publisher :
Springer International Publishing, 2020.

Abstract

Farmers need to detect any anomaly in animals as soon as possible for production efficiency (e.g. detection of estrus) and animal welfare (e.g. detection of diseases). The number of animals per farm is however increasing, making it difficult to detect anomalies. To help solving this problem, we undertook a study on dairy cows, in which their activity was captured by an indoor tracking system and considered as time series. The state of cows (diseases, estrus, no problem) was manually labelled by animal caretakers or by a sensor for ruminal pH (acidosis). In the present study, we propose a new Fourier based method (FBAT) to detect anomalies in time series. We compare FBAT with the best machine learning methods for time series classification in the current literature (BOSS, Hive-Cote, DTW, FCN and ResNet). It follows that BOSS, FBAT and deep learning methods yield the best performance but with different characteristics.

Details

ISBN :
978-3-030-59490-9
ISBNs :
9783030594909
Database :
OpenAIRE
Journal :
Lecture Notes in Computer Science ISBN: 9783030594909, ISMIS, Comparison of Machine Learning Methods to Detect Anomalies in the Activity of Dairy Cows, Comparison of Machine Learning Methods to Detect Anomalies in the Activity of Dairy Cows, pp.342-351, 2020, ⟨10.1007/978-3-030-59491-6_32⟩
Accession number :
edsair.doi.dedup.....67d7e7269c85f9b0f4ee77545ebb1756