Back to Search
Start Over
Dynamical renormalization group approach to the collective behaviour of swarms
- Source :
- Physical Review Letters, Physical review letters, 123 (2019): 268001-1–268001-5. doi:10.1103/PhysRevLett.123.268001, info:cnr-pdr/source/autori:Cavagna, Andrea; Di Carlo, Luca; Giardina, Irene; Grandinetti, Luca; Grigera, Tomas S.; Pisegna, Giulia/titolo:Dynamical Renormalization Group Approach to the Collective Behavior of Swarms/doi:10.1103%2FPhysRevLett.123.268001/rivista:Physical review letters (Print)/anno:2019/pagina_da:268001-1/pagina_a:268001-5/intervallo_pagine:268001-1–268001-5/volume:123, SEDICI (UNLP), Universidad Nacional de La Plata, instacron:UNLP, CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET
- Publication Year :
- 2019
- Publisher :
- American Physical Society, 2019.
-
Abstract
- We study the critical behavior of a model with nondissipative couplings aimed at describing the collective behavior of natural swarms, using the dynamical renormalization group under a fixed-network approximation. At one loop, we find a crossover between an unstable fixed point, characterized by a dynamical critical exponent z ¼ d=2, and a stable fixed point with z ¼ 2, a result we confirm through numerical simulations. The crossover is regulated by a length scale given by the ratio between the transport coefficient and the effective friction, so that in finite-size biological systems with low dissipation, dynamics is ruled by the unstable fixed point. In three dimensions this mechanism gives z ¼ 3=2, a value significantly closer to the experimental window, 1.0 ≤ z ≤ 1.3, than the value z ≈ 2 numerically found in fully dissipative models, either at or off equilibrium. This result indicates that nondissipative dynamical couplings are necessary to develop a theory of natural swarms fully consistent with experiments.<br />Instituto de Física de Líquidos y Sistemas Biológicos
- Subjects :
- Length scale
Collective behavior
Dissipative model
Transport coefficient
Biología
Crossover
General Physics and Astronomy
Collective dynamics
FOS: Physical sciences
Fixed point
01 natural sciences
Quantitative Biology - Quantitative Methods
purl.org/becyt/ford/1 [https]
0103 physical sciences
quantitative methods
Swarming. active matter
biological physics
Physics - Biological Physics
010306 general physics
Condensed Matter - Statistical Mechanics
Quantitative Methods (q-bio.QM)
Mathematical physics
Physics
Statistical Mechanics (cond-mat.stat-mech)
Física
Bose-Einstein condensates
quantitative biology
purl.org/becyt/ford/1.3 [https]
Renormalization group
Critical behavior
Biological Physics (physics.bio-ph)
statistical mechanics
physics
FOS: Biological sciences
Dissipative system
Couplings
renormalization group
active matter
Critical exponent
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Physical Review Letters, Physical review letters, 123 (2019): 268001-1–268001-5. doi:10.1103/PhysRevLett.123.268001, info:cnr-pdr/source/autori:Cavagna, Andrea; Di Carlo, Luca; Giardina, Irene; Grandinetti, Luca; Grigera, Tomas S.; Pisegna, Giulia/titolo:Dynamical Renormalization Group Approach to the Collective Behavior of Swarms/doi:10.1103%2FPhysRevLett.123.268001/rivista:Physical review letters (Print)/anno:2019/pagina_da:268001-1/pagina_a:268001-5/intervallo_pagine:268001-1–268001-5/volume:123, SEDICI (UNLP), Universidad Nacional de La Plata, instacron:UNLP, CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET
- Accession number :
- edsair.doi.dedup.....67b579fd97bd6430f1dae1f9b63f38f9
- Full Text :
- https://doi.org/10.1103/PhysRevLett.123.268001