Back to Search Start Over

Depth in classical Coxeter groups

Authors :
Eli Bagno
Alexander Woo
Mordechai Novick
Riccardo Biagioli
Jerusalem College of Technology (JCT)
Combinatoire, théorie des nombres (CTN)
Institut Camille Jordan [Villeurbanne] (ICJ)
École Centrale de Lyon (ECL)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Department of Mathematics [Moscow Idaho]
University of Idaho [Moscow, USA]
Biagioli R
Bagno E
Novick M
Woo A
Source :
Journal of Algebraic Combinatorics, Journal of Algebraic Combinatorics, Springer Verlag, 2016, 44 (3), pp.645-676. ⟨10.1007/s10801-016-0683-9⟩
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

The depth statistic was defined by Petersen and Tenner for an element of an arbitrary Coxeter group in terms of factorizations of the element into a product of reflections. It can also be defined as the minimal cost, given certain prescribed edge weights, for a path in the Bruhat graph from the identity to an element. We present algorithms for calculating the depth of an element of a classical Coxeter group that yield simple formulas for this statistic. We use our algorithms to characterize elements having depth equal to length. These are the short-braid-avoiding elements. We also give a characterization of the elements for which the reflection length coincides with both depth and length. These are the boolean elements.

Details

Language :
English
ISSN :
09259899 and 15729192
Database :
OpenAIRE
Journal :
Journal of Algebraic Combinatorics, Journal of Algebraic Combinatorics, Springer Verlag, 2016, 44 (3), pp.645-676. ⟨10.1007/s10801-016-0683-9⟩
Accession number :
edsair.doi.dedup.....678e556b9397068f21d4447914e18df5
Full Text :
https://doi.org/10.1007/s10801-016-0683-9⟩