Back to Search Start Over

Extremes of Lineage Plasticity in the Drosophila Brain

Authors :
Elizabeth C. Marin
Chih-Fei Kao
Tzumin Lee
Bettye A. Apenteng
James W Truman
Michael B. O'Connor
Ching Po Yang
Yaling Huang
Suewei Lin
Source :
Current Biology. 23(19)
Publication Year :
2013

Abstract

SummaryAn often-overlooked aspect of neural plasticity is the plasticity of neuronal composition, in which the numbers of neurons of particular classes are altered in response to environment and experience. The Drosophila brain features several well-characterized lineages in which a single neuroblast gives rise to multiple neuronal classes in a stereotyped sequence during development [1]. We find that in the intrinsic mushroom body neuron lineage, the numbers for each class are highly plastic, depending on the timing of temporal fate transitions and the rate of neuroblast proliferation. For example, mushroom body neuroblast cycling can continue under starvation conditions, uncoupled from temporal fate transitions that depend on extrinsic cues reflecting organismal growth and development. In contrast, the proliferation rates of antennal lobe lineages are closely associated with organismal development, and their temporal fate changes appear to be cell cycle-dependent, such that the same numbers and types of uniglomerular projection neurons innervate the antennal lobe following various perturbations. We propose that this surprising difference in plasticity for these brain lineages is adaptive, given their respective roles as parallel processors versus discrete carriers of olfactory information.

Details

Language :
English
ISSN :
09609822
Volume :
23
Issue :
19
Database :
OpenAIRE
Journal :
Current Biology
Accession number :
edsair.doi.dedup.....67893f7e67c35ad8bc769c408564bded