Back to Search Start Over

COUNTING SORGHUM LEAVES FROM RGB IMAGES BY PANOPTIC SEGMENTATION

Authors :
Ostermann, Ian
Publication Year :
2023
Publisher :
Purdue University Graduate School, 2023.

Abstract

Meeting the nutritional requirements of an increasing population in a changing climate is the foremost concern of agricultural research in recent years. A solution to some of the many questions posed by this existential threat is breeding crops that more efficiently produce food with respect to land and water use. A key aspect to this optimization is geometric aspects of plant physiology such as canopy architecture that, while based in the actual 3D structure of the organism, does not necessarily require such a representation to measure. Although deep learning is a powerful tool to answer phenotyping questions that do not require an explicit intermediate 3D representation, training a network traditionally requires a large number of hand-segmented ground truth images. To bypass the enormous time and expense of hand- labeling datasets, we utilized a procedural sorghum image pipeline from another student in our group that produces images similar enough to the ground truth images from the phenotyping facility that the network can be directly used on real data while training only on automatically generated data. The synthetic data was used to train a deep segmentation network to identify which pixels correspond to which leaves. The segmentations were then processed to find the number of leaves identified in each image to use for the leaf-counting task in high-throughput phenotyping. Overall, our method performs comparably with human annotation accuracy by correctly predicting within a 90% confidence interval of the true leaf count in 97% of images while being faster and cheaper. This helps to add another expensive- to-collect phenotypic trait to the list of those that can be automatically collected.

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....677353b70cd72b1b4af3d8312ef4faf7
Full Text :
https://doi.org/10.25394/pgs.22659127