Back to Search
Start Over
Separating Sulfur from Fuel Gas Desulfurization Gypsum with an Oxalic Acid Solution
- Source :
- ACS Omega, Vol 5, Iss 27, Pp 16932-16939 (2020), ACS Omega
- Publication Year :
- 2020
- Publisher :
- American Chemical Society, 2020.
-
Abstract
- The separation of sulfur from the wet limestone fuel gas desulfurization (FGD) gypsum using oxalic acid solution was studied. Optimal separation conditions and a separation mechanism of sulfur were investigated. The obtained results indicate that the sulfur in FGD gypsum can be separated efficiently by oxalic acid solution. When separating under the optimal experimental conditions of 0.3 mol/L oxalic acid solution, 30 °C, and a 5/150 g/mL solid to liquid ratio for 8 min, the separation rate reached 97.0 wt %. Besides, the Avrami equation is more suitable for the kinetic analysis of the sulfur separation reaction than the unreacted shrinking core model. When the reaction temperature is less than or equal to 20 °C, the mechanism of the sulfur separation process is chemical-reaction-controlled; otherwise, it is diffusion-controlled. The activation energy E a of the sulfur separation reaction is 34.84 kJ/mol. During the separation process, the pH of the solution gradually decreased due to the conversion of oxalic acid to sulfuric acid, so the liquid obtained after the sulfur separation of FGD gypsum can be recycled as industrial sulfuric acid. Nearly 1 mol of sulfuric acid can be obtained for every mole of oxalic acid consumption.
- Subjects :
- inorganic chemicals
Gypsum
General Chemical Engineering
Oxalic acid
Inorganic chemistry
chemistry.chemical_element
Sulfuric acid
General Chemistry
Activation energy
engineering.material
Sulfur
Article
Separation process
Flue-gas desulfurization
Avrami equation
chemistry.chemical_compound
Chemistry
chemistry
engineering
QD1-999
Subjects
Details
- Language :
- English
- ISSN :
- 24701343
- Volume :
- 5
- Issue :
- 27
- Database :
- OpenAIRE
- Journal :
- ACS Omega
- Accession number :
- edsair.doi.dedup.....6768e9d01cdf66faedbf4ba33d8ae598