Back to Search
Start Over
Semiclassical Propagation of Coherent States for the Hartree Equation
- Source :
- Annales Henri Poincaré, Annales Henri Poincaré, Springer Verlag, 2011, 12 (8), pp.1613-1634. ⟨10.1007/s00023-011-0115-2⟩
- Publication Year :
- 2011
-
Abstract
- International audience; In this paper we consider the nonlinear Hartree equation in presence of a given external potential, for an initial coherent state. Under suitable smoothness assumptions, we approximate the solution in terms of a time dependent coherent state, whose phase and amplitude can be determined by a classical flow. The error can be estimated in $L^2$ by $C \sqrt {\var}$, $\var$ being the Planck constant. Finally we present a full formal asymptotic expansion.
- Subjects :
- Nuclear and High Energy Physics
Semiclassical analysis
FOS: Physical sciences
Semiclassical physics
Planck constant
01 natural sciences
symbols.namesake
Hartree equation
0103 physical sciences
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
Coherent states
0101 mathematics
Mathematical Physics
Mathematical physics
Physics
Smoothness (probability theory)
010102 general mathematics
Statistical and Nonlinear Physics
Mathematical Physics (math-ph)
16. Peace & justice
Amplitude
Flow (mathematics)
symbols
010307 mathematical physics
Asymptotic expansion
Subjects
Details
- Language :
- English
- ISSN :
- 14240637 and 14240661
- Database :
- OpenAIRE
- Journal :
- Annales Henri Poincaré, Annales Henri Poincaré, Springer Verlag, 2011, 12 (8), pp.1613-1634. ⟨10.1007/s00023-011-0115-2⟩
- Accession number :
- edsair.doi.dedup.....675ddb6c2e9e318774e900403aafa47e
- Full Text :
- https://doi.org/10.1007/s00023-011-0115-2⟩