Back to Search
Start Over
Interpolation with variably scaled kernels
- Source :
- IMA journal of numerical analysis (Online) 35 (2015): 199–219. doi:10.1093/imanum/drt071, info:cnr-pdr/source/autori:M. Bozzini, L. Lenarduzzi, M. Rossini, and R. Schaback/titolo:Interpolation with variable scaled kernels/doi:10.1093%2Fimanum%2Fdrt071/rivista:IMA journal of numerical analysis (Online)/anno:2015/pagina_da:199/pagina_a:219/intervallo_pagine:199–219/volume:35
- Publication Year :
- 2015
- Publisher :
- Oxford University Press, 2015.
-
Abstract
- Within kernel-based interpolation and its many applications, the handling of the scaling or the shape parameter is a well-documented but unsolved problem. We consider native spaces whose kernels allow us to change the kernel scale of a d-variate interpolation problem locally, depending on the requirements of the application. The trick is to define a scale function c on the domain ? ? Rd to transform an interpolation problem from data locations xj in Rd to data locations (xj, c(xj)) and to use a fixed-scale kernel on Rd+1 for interpolation there. The (d+1)-variate solution is then evaluated at (x, c(x)) for x ? Rd to give a d-variate interpolant with a varying scale. A large number of examples show how this can be done in practice to get results that are better than the fixed-scale technique, with respect to both condition number and error. The background theory coincides with fixed-scale interpolation on the submanifold of Rd+1 given by the points (x, c(x)) of the graph of the scale function c.
- Subjects :
- shape parameter
Applied Mathematics
General Mathematics
scaling
positive-definite radial basis functions
010103 numerical & computational mathematics
01 natural sciences
010101 applied mathematics
MAT/08 - ANALISI NUMERICA
Computational Mathematics
positive-definite radial basis function
Applied mathematics
0101 mathematics
Interpolation
Mathematics
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- IMA journal of numerical analysis (Online) 35 (2015): 199–219. doi:10.1093/imanum/drt071, info:cnr-pdr/source/autori:M. Bozzini, L. Lenarduzzi, M. Rossini, and R. Schaback/titolo:Interpolation with variable scaled kernels/doi:10.1093%2Fimanum%2Fdrt071/rivista:IMA journal of numerical analysis (Online)/anno:2015/pagina_da:199/pagina_a:219/intervallo_pagine:199–219/volume:35
- Accession number :
- edsair.doi.dedup.....674430b6cd637bc8dc66ce3ba843331c