Back to Search Start Over

Towards Kinematics From Motion: Unknown Input Observer and Dynamic Extension Approach

Authors :
Hicham Hadj-Abdelkader
Lamri Nehaoua
Rayane Benyoucef
Hichem Arioui
Informatique, BioInformatique, Systèmes Complexes (IBISC)
Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay
Source :
IEEE Control Systems Letters, IEEE Control Systems Letters, IEEE, 2022, 6, pp.1340--1345. ⟨10.1109/LCSYS.2021.3093067⟩, IEEE Control Systems Letters, 2021, 6, pp.1340--1345. ⟨10.1109/LCSYS.2021.3093067⟩
Publication Year :
2022
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2022.

Abstract

International audience; This letter addresses an unknown input observer design to estimate simultaneously the 3D depth of a tracked image feature and the camera linear velocity using a low cost monocular camera and inertial sensor. The camera kinematic model is at first, augmented via the dynamic extension approach then described as a quasi-Linear Parameter Varying (qLPV) model. Further, the qLPV system is transformed into Takagi-Sugeno (T-S) form with unmeasured premise variables. The error convergence analysis is performed based on Lyapunov theory and Input to State Stability (ISS) property to ensure the boundedness of the state estimation error. Gains that guarantee the asymptotic stability of the estimation error can be properly computed by means of Linear Matrix Inequalities (LMIs). Finally the proposed approach is validated using synthetic data.

Details

ISSN :
24751456
Volume :
6
Database :
OpenAIRE
Journal :
IEEE Control Systems Letters
Accession number :
edsair.doi.dedup.....673a23253f078b77aff15edb9249e99b