Back to Search
Start Over
Space Warping Order Parameters and Symmetry: Application to Multiscale Simulation of Macromolecular Assemblies
- Source :
- The Journal of Physical Chemistry B. 116:8423-8434
- Publication Year :
- 2012
- Publisher :
- American Chemical Society (ACS), 2012.
-
Abstract
- Coarse-grained features of macromolecular assemblies are understood via a set of order parameters (OPs) constructed in terms of their all-atom configuration. OPs are shown to be slowly changing in time and capture the large-scale spatial features of macromolecular assemblies. The relationship of these variables to the classic notion of OPs based on symmetry breaking phase transitions is discussed. OPs based on space warping transformations are analyzed in detail as they naturally provide a connection between overall structure of an assembly and all-atom configuration. These OPs serve as the basis of a multiscale analysis that yields Langevin equations for OP dynamics. In this context, the characteristics of OPs and PCA modes are compared. The OPs enable efficient all-atom multiscale simulations of the dynamics of macromolecular assemblies in response to changes in microenvironmental conditions, as demonstrated on the structural transitions of cowpea chlorotic mottle virus capsid (CCMV) and RNA of the satellite tobacco mosaic virus (STMV).
- Subjects :
- Physics
Quantitative Biology::Biomolecules
Phase transition
Basis (linear algebra)
Macromolecular Substances
Context (language use)
Nanotechnology
Environment
Molecular Dynamics Simulation
Space (mathematics)
Bromovirus
Article
Symmetry (physics)
Surfaces, Coatings and Films
Molecular dynamics
Capsid
Materials Chemistry
RNA, Viral
Tobacco mosaic satellite virus
Symmetry breaking
Physical and Theoretical Chemistry
Image warping
Biological system
Subjects
Details
- ISSN :
- 15205207 and 15206106
- Volume :
- 116
- Database :
- OpenAIRE
- Journal :
- The Journal of Physical Chemistry B
- Accession number :
- edsair.doi.dedup.....6737af998fceb81db755463c31bb694e