Back to Search Start Over

Prussian Blue Analogues for CO2 and SO2 Capture and Separation Applications

Authors :
Ghorishi S. Behrooz
B. Peter McGrail
Radha Kishan Motkuri
Praveen K. Thallapally
Carlos Fernandez
Source :
Inorganic Chemistry. 49:4909-4915
Publication Year :
2010
Publisher :
American Chemical Society (ACS), 2010.

Abstract

Adsorption isotherms of pure gases present in flue gas including CO(2), N(2), SO(2), NO, H(2)S, and water were studied using prussian blues of chemical formula M(3)[Co(CN)(6)](2).nH(2)O (M = Co, Zn) using an HPVA-100 volumetric gas analyzer and other spectroscopic methods. All the samples were characterized, and the microporous nature of the samples was studied using the BET isotherm. These materials adsorbed 8-10 wt % of CO(2) at room temperature and 1 bar of pressure with heats of adsorption ranging from 200 to 300 Btu/lb of CO(2), which is lower than monoethanolamine (750 Btu/lb of CO(2)) at the same mass loading. At high pressures (30 bar and 298 K), these materials adsorbed approximately 20-30 wt % of CO(2), which corresponds to 3 to 5 molecules of CO(2) per formula unit. Similar gas adsorption isotherms for SO(2), H(2)S, and NO were collected using a specially constructed volumetric gas analyzer. At close to 1 bar of equilibrium pressure, these materials sorb around 2.5, 2.7, and 1.2 mmol/g of SO(2), H(2)S, and NO. In particular, the uptake of SO(2) and H(2)S in Co(3)[Co(CN)(6)](2) is quite significant since it sorbs around 10 and 4.5 wt % at 0.1 bar of pressure. The stability of prussian blues before and after trace gases was studied using a powder X-ray diffraction instrument, which confirms these materials do not decompose after exposure to trace gases.

Details

ISSN :
1520510X and 00201669
Volume :
49
Database :
OpenAIRE
Journal :
Inorganic Chemistry
Accession number :
edsair.doi.dedup.....66ae1a3df8ab9230aac6eb981145fdb6
Full Text :
https://doi.org/10.1021/ic902397w