Back to Search Start Over

Functionalized tungsten disulfide nanotubes for dopamine and catechol detection in a tyrosinase-based amperometric biosensor design

Authors :
Serge Cosnier
Michael Holzinger
Chantal Gondran
Jean-Paul Lellouche
Quentin Palomar
Département de Chimie Moléculaire (DCM)
Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Département de Chimie Moléculaire - Biosystèmes Electrochimiques et Analytiques (DCM - BEA )
Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of materials chemistry‎ B, Journal of materials chemistry‎ B, Royal Society of Chemistry, 2020, ⟨10.1039/c9tb01926j⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

WS2 nanotubes functionalized with carboxylic acid functions (WS2-COOH) were used for improved immobilization of the enzyme tyrosinase in order to form an electrochemical biosensor towards catechol and dopamine. The nanotubes were deposited on glassy carbon electrodes using a dispersion-filtration-transfer procedure to assure the reproducibility of the deposits. After the electrochemical and morphological characterization of these WS2-COOH nanotube deposits, the formed biosensors showed very satisfying performance towards catechol detection with a linear range of 0.6-70 μmol L-1 and a sensitivity of 10.7 ± 0.2 mA L mol-1. The apparent Michaelis Menten constant of this system is slightly lower than the KM value of tyrosinase in solution, reflecting an excellent accessibility of the active site of the enzyme combined with a good mass transport of the target molecule through the deposit. For dopamine detection, we observed an accumulation of this substrate due to electrostatic interactions between the amine function of dopamine and the carboxylic acid groups of the nanotubes. This led to improved signal capture at low dopamine concentrations. With linear ranges of 0.5-10 μmol L-1 and 10-40 μmol L-1, and respective sensitivities of 6.2 ± 0.7 mA L mol-1 and 3.4 ± 0.4 mA L mol-1, the overall sensor performance is within the average of comparable results using carbon nanotubes. Nonetheless, the simplified handling of these nanotubes and their reduced environmental impact make these WS2-COOH nanotubes a promising nanomaterial for biosensing applications.

Details

Language :
English
ISSN :
2050750X
Database :
OpenAIRE
Journal :
Journal of materials chemistry‎ B, Journal of materials chemistry‎ B, Royal Society of Chemistry, 2020, ⟨10.1039/c9tb01926j⟩
Accession number :
edsair.doi.dedup.....6681a093683cac488e46265d712c0aef
Full Text :
https://doi.org/10.1039/c9tb01926j⟩