Back to Search
Start Over
Neuronal activity related to visually guided saccades in the frontal eye fields of rhesus monkeys: comparison with supplementary eye fields
- Source :
- Journal of neurophysiology. 66(2)
- Publication Year :
- 1991
-
Abstract
- 1. The purpose of this study was to analyze the response properties of neurons in the frontal eye fields (FEF) of rhesus monkeys (Macaca mulatta) and to compare and contrast the various functional classes with those recorded in the supplementary eye fields (SEF) of the same animals performing the same go/no-go visual tracking task. Three hundred ten cells recorded in FEF provided the data for this investigation. 2. Visual cells in FEF responded to the stimuli that guided the eye movements. The visual cells in FEF responded with a slightly shorter latency and were more consistent and phasic in their activation than their counterparts in SEF. The receptive fields tended to emphasize the contralateral hemifield to the same extent as those observed in SEF visual cells. 3. Preparatory set cells began to discharge after the presentation of the target and ceased firing before the saccade, after the go/no-go cue was given. These neurons comprised a smaller proportion in FEF than in SEF. In contrast to their counterparts in SEF, the preparatory set cells in FEF did not respond preferentially in relation to contralateral movements, even though most responded preferentially for movements in one particular direction. The time course of the discharge of the FEF set cells was similar to that of their SEF counterparts, except that they reached their peak level of activation sooner. The few preparatory set cells in FEF tested with both auditory and visual stimuli tended to respond preferentially to the visual targets, whereas, in contrast, most set cells in SEF were bimodal. 4. Sensory-movement cells represented the largest population of cells recorded in FEF, responding in relation to both the presentation of the targets and the execution of the saccade. Although some of these sensory-movement cells resembled their counterparts in SEF by exhibiting a sustained elevation of activity, most of the FEF sensory-movement cells gave two discrete bursts, one after the presentation of the target and another before and during the saccade. Like their counterparts in SEF, the sensory-movement cells tended to be tuned for saccades into the contralateral hemifield, but this tendency was more pronounced in FEF than in SEF. The FEF sensory-movement cells discharged more briskly, with a shorter latency relative to the presentation of the target, than their counterparts in SEF. In addition, the FEF sensory-movement neurons reached their peak activation sooner than SEF sensory-movement neurons. Most FEF sensory-movement cells exhibited different patterns of activation in response to visual and auditory targets.(ABSTRACT TRUNCATED AT 400 WORDS)
- Subjects :
- Supplementary eye field
Male
genetic structures
Physiology
Population
Motion Perception
Retina
Saccades
Premovement neuronal activity
Animals
Neurons, Afferent
education
Vision, Ocular
Cerebral Cortex
Motor Neurons
Neurons
education.field_of_study
General Neuroscience
Eye movement
Frontal eye fields
Macaca mulatta
Electrophysiology
Receptive field
Saccade
Visual Perception
Visual Fields
Psychology
Neuroscience
Subjects
Details
- ISSN :
- 00223077
- Volume :
- 66
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- Journal of neurophysiology
- Accession number :
- edsair.doi.dedup.....666c963e955c3cfe3e6aacc1f1b90eb3