Back to Search Start Over

Maximizing cartilage formation and integration via a trajectory-based tissue engineering approach

Authors :
Nicole Söegaard
David R. Steinberg
Elizabeth A. Henning
Matthew B. Fisher
Robert L. Mauck
George R. Dodge
Source :
Biomaterials. 35:2140-2148
Publication Year :
2014
Publisher :
Elsevier BV, 2014.

Abstract

Given the limitations of current surgical approaches to treat articular cartilage injuries, tissue engineering (TE) approaches have been aggressively pursued. Despite reproduction of key mechanical attributes of native tissue, the ability of TE cartilage constructs to integrate with native tissue must also be optimized for clinical success. In this paper, we propose a "trajectory-based" tissue engineering (TB-TE) approach, based on the hypothesis that time-dependent increases in construct maturation in-vitro prior to implantation (i.e. positive rates) may provide a reliable predictor of in-vivo success. As an example TE system, we utilized hyaluronic acid hydrogels laden with mesenchymal stem cells. We first modeled the maturation of these constructs in-vitro to capture time-dependent changes. We then performed a sensitivity analysis of the model to optimize the timing and amount of data collection. Finally, we showed that integration to cartilage in-vitro is not correlated to the maturation state of TE constructs, but rather their maturation rate, providing a proof-of-concept for the use of TB-TE to enhance treatment outcomes following cartilage injury. This new approach challenges the traditional TE paradigm of matching only native state parameters of maturity and emphasizes the importance of also establishing an in-vitro trajectory in constructs in order to improve the chance of in-vivo success.

Details

ISSN :
01429612
Volume :
35
Database :
OpenAIRE
Journal :
Biomaterials
Accession number :
edsair.doi.dedup.....663e3dbd251a5b776030e6a9dc4c776a
Full Text :
https://doi.org/10.1016/j.biomaterials.2013.11.031