Back to Search Start Over

Performance evaluation of MIND demons deformable registration of MR and CT images in spinal interventions

Authors :
Ali Uneri
Gerhard Kleinszig
Jerry L. Prince
Jean Paul Wolinsky
T. De Silva
Sebastian Vogt
J. Goerres
Jeffrey H. Siewerdsen
M. Jacobson
Michael D. Ketcha
S. Reaungamornrat
A. J. Khanna
Source :
Physics in Medicine and Biology. 61:8276-8297
Publication Year :
2016
Publisher :
IOP Publishing, 2016.

Abstract

Accurate intraoperative localization of target anatomy and adjacent nervous and vascular tissue is essential to safe, effective surgery, and multimodality deformable registration can be used to identify such anatomy by fusing preoperative CT or MR images with intraoperative images. A deformable image registration method has been developed to estimate viscoelastic diffeomorphisms between preoperative MR and intraoperative CT using modality-independent neighborhood descriptors (MIND) and a Huber metric for robust registration. The method, called MIND Demons, optimizes a constrained symmetric energy functional incorporating priors on smoothness, geodesics, and invertibility by alternating between Gauss-Newton optimization and Tikhonov regularization in a multiresolution scheme. Registration performance was evaluated for the MIND Demons method with a symmetric energy formulation in comparison to an asymmetric form, and sensitivity to anisotropic MR voxel-size was analyzed in phantom experiments emulating image-guided spine-surgery in comparison to a free-form deformation (FFD) method using local mutual information (LMI). Performance was validated in a clinical study involving 15 patients undergoing intervention of the cervical, thoracic, and lumbar spine. The target registration error (TRE) for the symmetric MIND Demons formulation (1.3 ± 0.8 mm (median ± interquartile)) outperformed the asymmetric form (3.6 ± 4.4 mm). The method demonstrated fairly minor sensitivity to anisotropic MR voxel size, with median TRE ranging 1.3-2.9 mm for MR slice thickness ranging 0.9-9.9 mm, compared to TRE = 3.2-4.1 mm for LMI FFD over the same range. Evaluation in clinical data demonstrated sub-voxel TRE (

Details

ISSN :
13616560 and 00319155
Volume :
61
Database :
OpenAIRE
Journal :
Physics in Medicine and Biology
Accession number :
edsair.doi.dedup.....6636fa3b38203a87f874b8fd3b5d5967
Full Text :
https://doi.org/10.1088/0031-9155/61/23/8276