Back to Search Start Over

Use of deep features for the automatic classification of fish sounds

Authors :
Cedric Gervaise
Mauro Dalla Mura
Marielle Malfante
Omar Mohammed
Jerome Mars
SIGMAPHY ( GIPSA-SIGMAPHY )
Département Images et Signal ( GIPSA-DIS )
Grenoble Images Parole Signal Automatique ( GIPSA-lab )
Université Pierre Mendès France - Grenoble 2 ( UPMF ) -Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ) -Université Pierre Mendès France - Grenoble 2 ( UPMF ) -Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ) -Grenoble Images Parole Signal Automatique ( GIPSA-lab )
Université Pierre Mendès France - Grenoble 2 ( UPMF ) -Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ) -Université Pierre Mendès France - Grenoble 2 ( UPMF ) -Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA )
CRISSP ( GIPSA-CRISSP )
Département Parole et Cognition ( GIPSA-DPC )
Chaire CHORUS - Fondation Grenoble-INP
Institut Polytechnique de Grenoble - Grenoble Institute of Technology
GIPSA - Signal Images Physique (GIPSA-SIGMAPHY)
Département Images et Signal (GIPSA-DIS)
Grenoble Images Parole Signal Automatique (GIPSA-lab )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Grenoble Images Parole Signal Automatique (GIPSA-lab )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
GIPSA - Cognitive Robotics, Interactive Systems, & Speech Processing (GIPSA-CRISSP)
Département Parole et Cognition (GIPSA-DPC)
Mars, Jerome
Source :
OCEANS’18 MTS/IEEE, OCEANS’18 MTS/IEEE, May 2018, KOBE, Japan, OCEANS 2018-OCEANS '18 MTS/IEEE. Ocean Planet – It’s our home., OCEANS 2018-OCEANS '18 MTS/IEEE. Ocean Planet – It’s our home., May 2018, Kobe, Japan
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

International audience; — The work presented in this paper focuses on the environmental monitoring of underwater areas using acoustic signals. In particular, we propose to compare the effectiveness of various feature sets used to represent the underwater acoustic data for the automatic processing of fish sounds We focus on the detection and classification tasks. Specifically, we compare the use of features issued from signal processing presented and validated in [15], [16] to the use of features obtained through deep convolutional neural networks. Experimental results show that the use of signal processing features outperform the deep features in terms of classification accuracy.

Details

Language :
English
Database :
OpenAIRE
Journal :
OCEANS’18 MTS/IEEE, OCEANS’18 MTS/IEEE, May 2018, KOBE, Japan, OCEANS 2018-OCEANS '18 MTS/IEEE. Ocean Planet – It’s our home., OCEANS 2018-OCEANS '18 MTS/IEEE. Ocean Planet – It’s our home., May 2018, Kobe, Japan
Accession number :
edsair.doi.dedup.....660b0f1c511183095df7da3290006049