Back to Search
Start Over
Descriptive complexity in Cantor series
- Publication Year :
- 2020
- Publisher :
- arXiv, 2020.
-
Abstract
- A Cantor series expansion for a real number $x$ with respect to a basic sequence $Q=(q_1,q_2,\dots)$, where $q_i \geq 2$, is a representation of the form $x=a_0 + \sum_{i=1}^\infty \frac{a_i}{q_1q_2\cdots q_i}$ where $0 \leq a_i<br />Comment: 22 pages
- Subjects :
- Physics
Sequence
Series (mathematics)
Mathematics - Number Theory
Mathematics::Commutative Algebra
Logic
Mathematics::Number Theory
Mathematics - Logic
Descriptive complexity theory
Combinatorics
Base (group theory)
Philosophy
Distribution (mathematics)
FOS: Mathematics
Mathematics::Mathematical Physics
Normal number
Number Theory (math.NT)
Series expansion
Logic (math.LO)
Real number
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....65edca62d0f230e0cbd98895e06875f3
- Full Text :
- https://doi.org/10.48550/arxiv.2010.13947