Back to Search Start Over

Mathematical Modeling of Textures: Application to Color Image Decomposition with a Projected Gradient Algorithm

Authors :
Jean-François Aujol
Luminita A. Vese
Vincent Duval
Laboratoire Traitement et Communication de l'Information (LTCI)
Télécom ParisTech-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)
Centre de Mathématiques et de Leurs Applications (CMLA)
École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS)
UCLA (UCLA)
California Institute of Technology (CALTECH)
Aujol, Jean-François
Source :
Journal of Mathematical Imaging and Vision, Journal of Mathematical Imaging and Vision, Springer Verlag, 2010, 37 (2), pp.232-248, Duval, Vincent; Aujol, Jean-François; & Vese, Luminita A.(2010). Mathematical Modeling of Textures: Application to Color Image Decomposition with a Projected Gradient Algorithm. Journal of Mathematical Imaging and Vision, 37(3), pp 232-248. doi: 10.1007/s10851-010-0203-9. Retrieved from: http://www.escholarship.org/uc/item/6gf0q6fh
Publisher :
Springer Nature

Abstract

In this paper, we are interested in texture modeling with functional analysis spaces. We focus on the case of color image processing, and in particular color image decomposition. The problem of image decomposition consists in splitting an original image f into two components u and v. u should contain the geometric information of the original image, while v should be made of the oscillating patterns of f, such as textures. We propose here a scheme based on a projected gradient algorithm to compute the solution of various decomposition models for color images or vector-valued images. We provide a direct convergence proof of the scheme, and we give some analysis on color texture modeling.

Details

Language :
English
ISSN :
09249907 and 15737683
Volume :
37
Issue :
3
Database :
OpenAIRE
Journal :
Journal of Mathematical Imaging and Vision
Accession number :
edsair.doi.dedup.....65d8976a40b697b7181e91734eec756d
Full Text :
https://doi.org/10.1007/s10851-010-0203-9