Back to Search
Start Over
Stationary analysis of the shortest queue problem
- Source :
- Queueing Systems, Queueing Systems, 2017, 87 (3-4), pp.211-243. ⟨10.1007/s11134-017-9556-8⟩, Queueing Systems, Springer Verlag, 2017, 87 (3-4), pp.211-243. ⟨10.1007/s11134-017-9556-8⟩
- Publication Year :
- 2017
- Publisher :
- HAL CCSD, 2017.
-
Abstract
- A simple analytical solution is proposed for the stationary loss system of two parallel queues with finite capacity K, in which new customers join the shortest queue, or one of the two with equal probability if their lengths are equal. The arrival process is Poisson, service times at each queue have exponential distributions with the same parameter, and both queues have equal capacity. Using standard generating function arguments, a simple expression for the blocking probability is derived, which as far as we know is original. Using coupling arguments and explicit formulas, comparisons with related loss systems are then provided. Bounds are similarly obtained for the average total number of customers, with the stationary distribution explicitly determined on $$\{K, \ldots , 2K \}$$ , and elsewhere upper bounded. Furthermore, from the balance equations, all stationary probabilities are obtained as explicit combinations of their values at states (0, k) for $$0 \le k \le K$$ . These expressions extend to the infinite capacity and asymmetric cases, i.e., when the queues have different service rates. For the initial symmetric finite capacity model, the stationary probabilities of states (0, k) can be obtained recursively from the blocking probability. In the other cases, they are implicitly determined through a functional equation that characterizes their generating function. The whole approach shows that the stationary distribution of the infinite capacity symmetric process is the limit of the corresponding finite capacity distributions. Finally, application of the results for limited capacity to mean-field models for large bike-sharing networks with a local JSQ policy is briefly discussed.
- Subjects :
- 0211 other engineering and technologies
02 engineering and technology
Management Science and Operations Research
Fork–join queue
Poisson distribution
01 natural sciences
010104 statistics & probability
symbols.namesake
MSC classes: 60J27, 60K25
Functional equation
FOS: Mathematics
60J27, 60K25
Applied mathematics
0101 mathematics
Queue
Mathematics
Discrete mathematics
021103 operations research
Stationary distribution
Probability (math.PR)
Generating function
Stationary probabilities
Coupling (probability)
Finite capacity
Computer Science Applications
[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
Computational Theory and Mathematics
Bounded function
symbols
Shortest queue
Bivariate generating function
Mathematics - Probability
Subjects
Details
- Language :
- English
- ISSN :
- 02570130 and 15729443
- Database :
- OpenAIRE
- Journal :
- Queueing Systems, Queueing Systems, 2017, 87 (3-4), pp.211-243. ⟨10.1007/s11134-017-9556-8⟩, Queueing Systems, Springer Verlag, 2017, 87 (3-4), pp.211-243. ⟨10.1007/s11134-017-9556-8⟩
- Accession number :
- edsair.doi.dedup.....6576ef35599372e11b6ef89b18e7df0d