Back to Search Start Over

Stationary analysis of the shortest queue problem

Authors :
Christine Fricker
Plinio S. Dester
Danielle Tibi
Networks, Algorithms and Probabilities (RAP2)
Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Dynamics of Geometric Networks (DYOGENE)
Département d'informatique - ENS Paris (DI-ENS)
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)
Laboratoire de Probabilités et Modèles Aléatoires (LPMA)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Département d'informatique - ENS Paris (DI-ENS)
Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC)
Département d'informatique de l'École normale supérieure (DI-ENS)
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
Source :
Queueing Systems, Queueing Systems, 2017, 87 (3-4), pp.211-243. ⟨10.1007/s11134-017-9556-8⟩, Queueing Systems, Springer Verlag, 2017, 87 (3-4), pp.211-243. ⟨10.1007/s11134-017-9556-8⟩
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

A simple analytical solution is proposed for the stationary loss system of two parallel queues with finite capacity K, in which new customers join the shortest queue, or one of the two with equal probability if their lengths are equal. The arrival process is Poisson, service times at each queue have exponential distributions with the same parameter, and both queues have equal capacity. Using standard generating function arguments, a simple expression for the blocking probability is derived, which as far as we know is original. Using coupling arguments and explicit formulas, comparisons with related loss systems are then provided. Bounds are similarly obtained for the average total number of customers, with the stationary distribution explicitly determined on $$\{K, \ldots , 2K \}$$ , and elsewhere upper bounded. Furthermore, from the balance equations, all stationary probabilities are obtained as explicit combinations of their values at states (0, k) for $$0 \le k \le K$$ . These expressions extend to the infinite capacity and asymmetric cases, i.e., when the queues have different service rates. For the initial symmetric finite capacity model, the stationary probabilities of states (0, k) can be obtained recursively from the blocking probability. In the other cases, they are implicitly determined through a functional equation that characterizes their generating function. The whole approach shows that the stationary distribution of the infinite capacity symmetric process is the limit of the corresponding finite capacity distributions. Finally, application of the results for limited capacity to mean-field models for large bike-sharing networks with a local JSQ policy is briefly discussed.

Details

Language :
English
ISSN :
02570130 and 15729443
Database :
OpenAIRE
Journal :
Queueing Systems, Queueing Systems, 2017, 87 (3-4), pp.211-243. ⟨10.1007/s11134-017-9556-8⟩, Queueing Systems, Springer Verlag, 2017, 87 (3-4), pp.211-243. ⟨10.1007/s11134-017-9556-8⟩
Accession number :
edsair.doi.dedup.....6576ef35599372e11b6ef89b18e7df0d