Back to Search
Start Over
Exact and approximate inference in ProBT
- Source :
- Revue des Sciences et Technologies de l'Information-Série RIA : Revue d'Intelligence Artificielle, Revue des Sciences et Technologies de l'Information-Série RIA : Revue d'Intelligence Artificielle, 2007, 21/3, pp.295-332, Revue des Sciences et Technologies de l'Information-Série RIA : Revue d'Intelligence Artificielle, Lavoisier, 2007, 21/3, pp.295-332, HAL
- Publication Year :
- 2007
- Publisher :
- International Information and Engineering Technology Association, 2007.
-
Abstract
- We present a unifying framework for exact and approximate inference in Bayesian networks. This framework is used in "ProBT", a general purpose inference engine for probabilistic reasoning and incremental model construction. This paper is not intended to present ProB T but to describe its underlying algorithms mainly the "Successive Restrictions Algorithm " (SRA) for exact inference, and the "Monte Carlo Simultaneous Estimation and Maximization" (MCSEM) algorithm for approximate inference problems. The main idea of ProBT is to use "probability expressions " that can be "exact" or "approximate" as basic bricks to build more complex models incrementally.
- Subjects :
- [SCCO.COMP]Cognitive science/Computer science
Inference
02 engineering and technology
Machine learning
computer.software_genre
01 natural sciences
Artificial Intelligence
Frequentist inference
0103 physical sciences
0202 electrical engineering, electronic engineering, information engineering
Point estimation
Inference engine
Rule of inference
ComputingMilieux_MISCELLANEOUS
Mathematics
010308 nuclear & particles physics
business.industry
[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
Bayesian statistics
Approximate inference
Fiducial inference
020201 artificial intelligence & image processing
Artificial intelligence
business
Algorithm
computer
Software
Subjects
Details
- ISSN :
- 0992499X and 19585748
- Volume :
- 21
- Database :
- OpenAIRE
- Journal :
- Revue d'intelligence artificielle
- Accession number :
- edsair.doi.dedup.....656dfadce1651e29b1b26409551263e6
- Full Text :
- https://doi.org/10.3166/ria.21.295-332