Back to Search Start Over

Exact and approximate inference in ProBT

Authors :
Linda Smail
Pierre Bessière
Juan-Manuel Ahuactzin
Emmanuel Mazer
Kamel Mekhnacha
Geometry and Probability for Motion and Action (E-MOTION)
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Grenoble (LIG)
Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)
Source :
Revue des Sciences et Technologies de l'Information-Série RIA : Revue d'Intelligence Artificielle, Revue des Sciences et Technologies de l'Information-Série RIA : Revue d'Intelligence Artificielle, 2007, 21/3, pp.295-332, Revue des Sciences et Technologies de l'Information-Série RIA : Revue d'Intelligence Artificielle, Lavoisier, 2007, 21/3, pp.295-332, HAL
Publication Year :
2007
Publisher :
International Information and Engineering Technology Association, 2007.

Abstract

We present a unifying framework for exact and approximate inference in Bayesian networks. This framework is used in "ProBT", a general purpose inference engine for probabilistic reasoning and incremental model construction. This paper is not intended to present ProB T but to describe its underlying algorithms mainly the "Successive Restrictions Algorithm " (SRA) for exact inference, and the "Monte Carlo Simultaneous Estimation and Maximization" (MCSEM) algorithm for approximate inference problems. The main idea of ProBT is to use "probability expressions " that can be "exact" or "approximate" as basic bricks to build more complex models incrementally.

Details

ISSN :
0992499X and 19585748
Volume :
21
Database :
OpenAIRE
Journal :
Revue d'intelligence artificielle
Accession number :
edsair.doi.dedup.....656dfadce1651e29b1b26409551263e6
Full Text :
https://doi.org/10.3166/ria.21.295-332