Back to Search
Start Over
Endothelial to mesenchymal transition during neonatal hyperoxia-induced pulmonary hypertension
- Source :
- J Pathol
- Publication Year :
- 2020
-
Abstract
- Bronchopulmonary dysplasia (BPD), a chronic lung disease in premature infants, results from mechanical ventilation and hyperoxia, amongst other factors. Although most BPD survivors can be weaned from supplemental oxygen, many show evidence of cardiovascular sequelae in adulthood, including pulmonary hypertension and pulmonary vascular remodeling. Endothelial-mesenchymal transition (EndoMT) plays an important role in mediating vascular remodeling in idiopathic pulmonary arterial hypertension. Whether hyperoxic exposure, a known mediator of BPD in rodent models, causes EndoMT resulting in vascular remodeling and pulmonary hypertension remains unclear. We hypothesized that neonatal hyperoxic exposure causes EndoMT, leading to the development of pulmonary hypertension in adulthood. To test this hypothesis, newborn mice were exposed to hyperoxia and then allowed to recover in room air until adulthood. Neonatal hyperoxic exposure gradually caused pulmonary vascular and right ventricle remodeling as well as pulmonary hypertension. Male mice were more susceptible to developing pulmonary hypertension compared to female mice, when exposed to hyperoxia as newborns. Hyperoxic exposure induced EndoMT in mouse lungs as well as in cultured lung microvascular endothelial cells (LMVECs) isolated from neonatal mice and human fetal donors. This was augmented in cultured LMVECs from male donors compared to those from female donors. Using primary mouse LMVECs, hyperoxic exposure increased phosphorylation of both Smad2 and Smad3, but reduced Smad7 protein levels. Treatment with a selective TGF-β inhibitor SB431542 blocked hyperoxia-induced EndoMT in vitro. Altogether, we show that neonatal hyperoxic exposure caused vascular remodeling and pulmonary hypertension in adulthood. This was associated with increased EndoMT. These novel observations provide mechanisms underlying hyperoxia-induced vascular remodeling and potential approaches to prevent BPD-associated pulmonary hypertension by targeting EndoMT. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
- Subjects :
- 0301 basic medicine
Male
medicine.medical_specialty
medicine.medical_treatment
Hypertension, Pulmonary
Smad Proteins
Hyperoxia
Vascular Remodeling
Article
Pathology and Forensic Medicine
03 medical and health sciences
Mice
0302 clinical medicine
Sex Factors
Internal medicine
medicine
Animals
Phosphorylation
Pathological
Lung
Bronchopulmonary Dysplasia
Mechanical ventilation
business.industry
Mesenchymal stem cell
Endothelial Cells
medicine.disease
Pulmonary hypertension
030104 developmental biology
medicine.anatomical_structure
Endocrinology
Bronchopulmonary dysplasia
Animals, Newborn
030220 oncology & carcinogenesis
Female
medicine.symptom
business
Transforming growth factor
Subjects
Details
- ISSN :
- 10969896
- Volume :
- 252
- Issue :
- 4
- Database :
- OpenAIRE
- Journal :
- The Journal of pathology
- Accession number :
- edsair.doi.dedup.....654d79358db3c03b12a1ee9a84a15c1f