Back to Search Start Over

A sequential guide to identify neonates with low bacterial meningitis risk: a multicenter study

Authors :
Yan Chen
Wenhua Zhong
Youyan Zhao
Qian Zhang
Xiaoping Lei
Liqin Shan
Jing Li
Yongjun Zhang
Chao Chen
Xiaohui Gong
Qin Zhou
Zhanghua Yin
Source :
Annals of Clinical and Translational Neurology, Annals of Clinical and Translational Neurology, Vol 8, Iss 5, Pp 1132-1140 (2021)
Publication Year :
2021
Publisher :
Wiley, 2021.

Abstract

Objective To derive and validate a predictive algorithm integrating clinical and laboratory parameters to stratify a full‐term neonate's risk level of having bacterial meningitis (BM). Methods A multicentered dataset was categorized into derivation (689 full‐term neonates aged ≤28 days with a lumbar puncture [LP]) and external validation (383 neonates) datasets. A sequential algorithm with risk stratification for neonatal BM was constructed. Results In the derivation dataset, 102 neonates had BM (14.8%). Using stepwise regression analysis, fever, infection source absence, neurological manifestation, C‐reactive protein (CRP), and procalcitonin were selected as optimal predictive sets for neonatal BM and introduced to a sequential algorithm. Based on the algorithm, 96.1% of BM cases (98 of 102) were identified, and 50.7% of the neonates (349 of 689) were classified as low risk. The algorithm’s sensitivity and negative predictive value (NPV) in identifying neonates at low risk of BM were 96.2% (95% CI 91.7%–98.9%) and 98.9% (95% CI 97.6%–99.6%), respectively. In the validation dataset, sensitivity and NPV were 95.9% (95% CI 91.0%–100%) and 98.8% (95% CI 97.7%–100%). Interpretation The sequential algorithm can risk stratify neonates for BM with excellent predictive performance and prove helpful to clinicians in LP‐related decision‐making.

Details

ISSN :
23289503
Volume :
8
Database :
OpenAIRE
Journal :
Annals of Clinical and Translational Neurology
Accession number :
edsair.doi.dedup.....6510df8ce994498fb40c39a02f982bcc
Full Text :
https://doi.org/10.1002/acn3.51356