Back to Search
Start Over
Ubiquinone-binding Site Mutations in the Saccharomyces cerevisiae Succinate Dehydrogenase Generate Superoxide and Lead to the Accumulation of Succinate
- Source :
- Journal of Biological Chemistry. 282:27518-27526
- Publication Year :
- 2007
- Publisher :
- Elsevier BV, 2007.
-
Abstract
- The mitochondrial succinate dehydrogenase (SDH) is an essential component of the electron transport chain and of the tricarboxylic acid cycle. Also known as complex II, this tetrameric enzyme catalyzes the oxidation of succinate to fumarate and reduces ubiquinone. Mutations in the human SDHB, SDHC, and SDHD genes are tumorigenic, leading to the development of several types of tumors, including paraganglioma and pheochromocytoma. The mechanisms linking SDH mutations to oncogenesis are still unclear. In this work, we used the yeast SDH to investigate the molecular and catalytic effects of tumorigenic or related mutations. We mutated Arg(47) of the Sdh3p subunit to Cys, Glu, and Lys and Asp(88) of the Sdh4p subunit to Asn, Glu, and Lys. Both Arg(47) and Asp(88) are conserved residues, and Arg(47) is a known site of cancer causing mutations in humans. All of the mutants examined have reduced ubiquinone reductase activities. The SDH3 R47K, SDH4 D88E, and SDH4 D88N mutants are sensitive to hyperoxia and paraquat and have elevated rates of superoxide production in vitro and in vivo. We also observed the accumulation and secretion of succinate. Succinate can inhibit prolyl hydroxylase enzymes, which initiate a proliferative response through the activation of hypoxia-inducible factor 1alpha. We suggest that SDH mutations can promote tumor formation by contributing to both reactive oxygen species production and to a proliferative response normally induced by hypoxia via the accumulation of succinate.
- Subjects :
- Ubiquinone binding
Mutation
Binding Sites
biology
Ubiquinone
SDHB
Electron Transport Complex II
Succinate dehydrogenase
Succinic Acid
Saccharomyces cerevisiae
Cell Biology
medicine.disease_cause
Biochemistry
Molecular biology
Citric acid cycle
Oxidative Stress
Superoxides
Ubiquinone reductase
biology.protein
medicine
SDHD
Molecular Biology
Subjects
Details
- ISSN :
- 00219258
- Volume :
- 282
- Database :
- OpenAIRE
- Journal :
- Journal of Biological Chemistry
- Accession number :
- edsair.doi.dedup.....64fcc1971deea3c91d64684d882b0458
- Full Text :
- https://doi.org/10.1074/jbc.m700601200