Back to Search Start Over

Components of Brachypodium distachyon resistance to nonadapted wheat stripe rust pathogens are simply inherited

Authors :
Michael Ayliffe
Inmaculada Hernández-Pinzón
Phon Green
Matthew Gardiner
Rebecca Spanner
Matthew J. Moscou
Amelia Hubbard
Jan Bettgenhaeuser
Source :
PLoS Genetics, PLoS Genetics, Vol 14, Iss 9, p e1007637 (2018)
Publication Year :
2018

Abstract

Multilayered defense responses ensure that plants are hosts to only a few adapted pathogens in the environment. The host range of a plant pathogen depends on its ability to fully overcome plant defense barriers, with failure at any single step sufficient to prevent life cycle completion of the pathogen. Puccinia striiformis, the causal agent of stripe rust (=yellow rust), is an agronomically important obligate biotrophic fungal pathogen of wheat and barley. It is generally unable to complete its life cycle on the non-adapted wild grass species Brachypodium distachyon, but natural variation exists for the degree of hyphal colonization by Puccinia striiformis. Using three B. distachyon mapping populations, we identified genetic loci conferring colonization resistance to wheat-adapted and barley-adapted isolates of P. striiformis. We observed a genetic architecture composed of two major effect QTLs (Yrr1 and Yrr3) restricting the colonization of P. striiformis. Isolate specificity was observed for Yrr1, whereas Yrr3 was effective against all tested P. striiformis isolates. Plant immune receptors of the nucleotide binding, leucine-rich repeat (NB-LRR) encoding gene family are present at the Yrr3 locus, whereas genes of this family were not identified at the Yrr1 locus. While it has been proposed that resistance to adapted and non-adapted pathogens are inherently different, the observation of (1) a simple genetic architecture of colonization resistance, (2) isolate specificity of major and minor effect QTLs, and (3) NB-LRR encoding genes at the Yrr3 locus suggest that factors associated with resistance to adapted pathogens are also critical for non-adapted pathogens.<br />Author summary Plants are constantly exposed to a multitude of potential pathogens but remain immune to most of these due to a multilayered immune system. Pathogens have specialized by adapting to certain host plants and their defense barriers. Most of our understanding of plant-pathogen interactions stems from these highly specialized interactions, because they are characterized by qualitative interactions (resistant or susceptible). It has generally been assumed that the genetic and molecular basis of resistance to non-adapted pathogens is fundamentally different, as either no variation exists in a species (complete immunity) or variation encompasses only early pathogen invasion (colonization), but not full susceptibility. We have studied the interaction between the agronomically important fungal stripe rust pathogen (Puccinia striiformis) of wheat and barley with the wild grass species Brachypodium distachyon. Rust infections consist of two stages: colonization of plant tissues followed by a reproductive phase. We identified natural variation for the degree of P. striiformis colonization in different B. distachyon accessions and dissected the genetic architecture controlling resistance at this infection stage. QTLs conferring resistance possessed several characteristics similar to adapted host systems, indicating that resistance to adapted and non-adapted pathogens are not intrinsically different.

Details

ISSN :
15537404
Volume :
14
Issue :
9
Database :
OpenAIRE
Journal :
PLoS genetics
Accession number :
edsair.doi.dedup.....64c845f1ab3718d2d6029f06f3ed6316