Back to Search
Start Over
Pharmacokinetic/pharmacodynamic relationships of asparaginase formulations: the past, the present and recommendations for the future
- Source :
- Clinical pharmacokinetics. 44(4)
- Publication Year :
- 2005
-
Abstract
- The discovery of the tumour-inhibitory properties of asparaginase began 50 years ago with the observation that guinea-pig serum-treated lymphoma-bearing mice underwent rapid and often complete regression. Soon afterwards, the asparaginase of bacterial origin was isolated. The asparaginases of bacterial origin induce anti-asparaginase neutralising antibodies in a large proportion of patients (44-60%), thus negating the specific enzymatic activity and resulting in failure of the target amino acid deamination in serum. There is immunological cross-reaction between the antibodies against various formulations of native Escherichia coli-asparaginase and polyethylene glycol (PEG)-asparaginases, but not to Erwinia asparaginase, as suggested by laboratory preclinical findings. This evidence was strongly inferred from the interim analyses in the Children's Cancer Group (CCG)-1961 study. Thus, anti-E. coli or PEG-asparaginase antibodies seropositive patients may benefit from the Erwinia asparaginase. The inter-relationships between asparaginase activity, asparagine (ASN) and glutamine deamination remain largely unexplored in patients. Studies have shown that ASN depletion is insufficient to induce apoptosis in T lymphoblasts in vitro and that the inhibitory concentration of CEM T-cell line is correlated with the asparaginase concentration responsible for 50% glutamine deamination. The optimal catalysis of ASN and glutamine deamination in serum by asparaginase induces apoptosis of leukaemic lymphoblasts. The percentage of ASN and glutamine deamination was predicted by asparaginase activity. Asparaginase activity of 0.1 IU/mL provided insufficient depletion of both amino acids in high-risk acute lymphoblastic leukaemia (ALL) patients. With increasing glutamine deamination, mean asparaginase activities and percentages of post-treatment samples with effective ASN depletion (3 micromol/L) increase. Both glutamine and ASN deamination are predicted by asparaginase activity. Further population analyses resulted in identification of sigmoid relationships between asparaginase levels and post-treatment glutamine and ASN deamination.Furthermore, pharmacodynamic analyses strongly suggested that/=90% deamination of glutamine must occur before optimal ASN deamination takes place, due to the de novo ASN biosynthesis by the liver. These pharmacodynamic results from the best-fit population pharmacokinetic/pharmacodynamic model obtained from nonlinear mixed effects model pharmacodynamic analyses for standard-risk ALL patients are similar. These analyses produced the following results: (i) asparaginase activity/=0.4 IU/mL provided insufficient deamination of ASN, whereas0.4-0.7 IU/mL was required for optimal (90%) ASN and glutamine deamination; and (ii) deamination of glutamine is dependent on asparaginase activity and it correlates with enhanced serum ASN deamination. Thus, glutamine deamination enhances asparaginase efficacy in ALL patients. Deamination of ASN/=90% of control or ASN concentration3 micromol/L may be associated with improved survival in this subset of patients. Our findings support the pharmacodynamic mechanism of PEG-asparaginase for disease control in ALL patients. These results taken together strongly support new experimental approaches for application of population pharmacokinetic/pharmacodynamic analyses to further enhance survival of leukaemia patients.
- Subjects :
- Asparaginase
Population
Deamination
Antineoplastic Agents
Pharmacology
History, 21st Century
Drug Administration Schedule
Polyethylene Glycols
chemistry.chemical_compound
Biosynthesis
Escherichia coli
Medicine
Animals
Humans
Pharmacology (medical)
Asparagine
education
Child
chemistry.chemical_classification
education.field_of_study
Clinical Trials as Topic
business.industry
Dickeya chrysanthemi
History, 20th Century
Precursor Cell Lymphoblastic Leukemia-Lymphoma
Amino acid
Glutamine
Enzyme
chemistry
Drug Resistance, Neoplasm
Immunology
business
Subjects
Details
- ISSN :
- 03125963
- Volume :
- 44
- Issue :
- 4
- Database :
- OpenAIRE
- Journal :
- Clinical pharmacokinetics
- Accession number :
- edsair.doi.dedup.....64bc5841cbb68f391444e796538c158d