Back to Search Start Over

Neutronic predictors for PWR fuelled with multi-recycled plutonium and applications with the fuel cycle simulation tool CLASS

Authors :
Nicolas Thiollière
Adrien Bidaud
Baptiste Leniau
Fanny Courtin
Sylvain David
Alice Somaini
B. Mouginot
Jean-Baptiste Clavel
Abdoul-Aziz Zakari-Issoufou
X. Doligez
Laboratoire SUBATECH Nantes (SUBATECH)
Mines Nantes (Mines Nantes)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
Institut de Physique Nucléaire d'Orsay (IPNO)
Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Physique Subatomique et de Cosmologie (LPSC)
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Institut de Radioprotection et de Sûreté Nucléaire (IRSN)
Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)
Source :
Progress in Nuclear Energy, Progress in Nuclear Energy, Elsevier, 2017, 100, pp.33-47. ⟨10.1016/j.pnucene.2017.04.018⟩
Publication Year :
2017
Publisher :
Elsevier BV, 2017.

Abstract

International audience; Dynamic fuel cycle simulation codes model evolving nuclear fuel cycles, and calculate nuclides inventories and material flows in each unit of the cycle. In the nuclear fuel cycle simulation code CLASS (Core Library for Advanced Scenario Simulation), a Fuel Loading Model (FLM) builds a fresh fuel fulfilling the reactor criticality requirement, depending on the available fissile material. Then, a mean cross-sections predictor calculates the mean cross-sections required to perform the fuel depletion in a short calculation time. This work focuses on the elaboration of these models in the case of a PWR-MOXEUS fuel (MOX on Enriched Uranium Support), which allows plutonium mono-recycling and multi-recycling in PWR. These models are built using neural networks. These predictors are trained on a databank composed of 1000 PWR infinite assembly depletion calculations performed using the software MURE (MCNP Utility for Reactor Evolution) based on the transport code MCNP (Monte-Carlo N Particle). Several databanks are tested and the performance of the resulting predictors are compared. The FLM predicts the plutonium content, and potentially the uranium enrichment, required in the fresh fuel. This model is based on a calculation of the infinite multiplication factor performed with an accuracy close to MCNP statistical error. Mean cross-sections prediction allows a deviation lower than 5% on main plutonium isotopes at 75 GWd/t compared to the fuel depletion reference calculation. PWR MOXEUS models are also tested on a balancing scenario. The complex evolution of MOXEUS fresh fuel isotopic composition during the scenario is highlighted. Furthermore, equilibrium fresh fuel isotopic vectors are compared to another study on an equilibrium MOXEUS multi-recycling strategy calculation, showing a good general agreement.

Details

ISSN :
01491970
Volume :
100
Database :
OpenAIRE
Journal :
Progress in Nuclear Energy
Accession number :
edsair.doi.dedup.....64898f98b71bbf970e1b418370ba926f
Full Text :
https://doi.org/10.1016/j.pnucene.2017.04.018