Back to Search
Start Over
Implanted Neurosphere-Derived Precursors Promote Recovery After Neonatal Excitotoxic Brain Injury
- Source :
- Stem Cells and Development, Stem Cells and Development, 2011, 20 (5), pp.865-879. ⟨10.1089/scd.2010.0302⟩, Stem Cells and Development, Mary Ann Liebert, 2011, 20 (5), pp.865-879. ⟨10.1089/scd.2010.0302⟩
- Publication Year :
- 2011
- Publisher :
- HAL CCSD, 2011.
-
Abstract
- International audience; Brain damage through excitotoxic mechanisms is a major cause of cerebral palsy in infants. This phenomenon usually occurs during the fetal period in human, and often leads to lifelong neurological morbidity with cognitive and sensorimotor impairment. However, there is currently no effective therapy. Significant recovery of brain function through neural stem cell implantation has been shown in several animal models of brain damage, but remains to be investigated in detail in neonates. In the present study, we evaluated the effect of cell therapy in a well-established neonatal mouse model of cerebral palsy induced by excitotoxicity (ibotenate treatment on postnatal day 5). Neurosphere-derived precursors or control cells (fibroblasts) were implanted into injured and control brains contralateral to the site of injury, and the fate of implanted cells was monitored by immunohistochemistry. Behavioral tests were performed in animals that received early (4 h after injury) or late (72 h after injury) cell implants. We show that neurosphere-derived precursors implanted into the injured brains of 5-day-old pups migrated to the lesion site, remained undifferentiated at day 10, and differentiated into oligodendrocyte and neurons at day 42. Although grafted cells finally die there few weeks later, this procedure triggered a reduction in lesion size and an improvement in memory performance compared with untreated animals, both 2 and 5 weeks after treatment. Although further studies are warranted, cell therapy could be a future therapeutic strategy for neonates with acute excitotoxic brain injury.
- Subjects :
- Pathology
medicine.medical_specialty
[SDV]Life Sciences [q-bio]
Excitotoxicity
Brain damage
Biology
medicine.disease_cause
Lesion
Cell therapy
Mice
03 medical and health sciences
Fetus
0302 clinical medicine
Neural Stem Cells
Cell Movement
Fetal Tissue Transplantation
Memory
030225 pediatrics
Neurosphere
medicine
Animals
Humans
Brain Tissue Transplantation
Ibotenic Acid
030304 developmental biology
Neurons
0303 health sciences
Cerebral Palsy
Infant, Newborn
Cell Differentiation
Recovery of Function
Cell Biology
Hematology
Anatomy
Fibroblasts
Immunohistochemistry
Oligodendrocyte
Neural stem cell
3. Good health
Mice, Inbred C57BL
Oligodendroglia
medicine.anatomical_structure
Animals, Newborn
Brain Injuries
Female
[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]
medicine.symptom
Developmental Biology
Subjects
Details
- Language :
- English
- ISSN :
- 15473287
- Database :
- OpenAIRE
- Journal :
- Stem Cells and Development, Stem Cells and Development, 2011, 20 (5), pp.865-879. ⟨10.1089/scd.2010.0302⟩, Stem Cells and Development, Mary Ann Liebert, 2011, 20 (5), pp.865-879. ⟨10.1089/scd.2010.0302⟩
- Accession number :
- edsair.doi.dedup.....646c168dd7f04730d12692c7b27870f2