Back to Search Start Over

High-Temperature Molecular Ferroelectric Tris(2-hydroxyethyl) Ammonium Bromide with Dielectric Relaxation

Authors :
Hong-Ling Cai
Kaige Gao
Zheng Tang
Zhangran Gao
Xiaofan Sun
X. S. Wu
Yizhang Wu
Xingming Yang
Source :
The journal of physical chemistry letters. 10(21)
Publication Year :
2019

Abstract

We obtained one new molecular ferroelectric material tris(2-hydroxyethyl) ammonium bromide (TAB) that crystallizes in aqueous solution at room temperature with a space group of R3m which belongs to ten polar space groups. There is a paraelectric-to-ferroelectric phase transition at 424 K (from hexagonal R3m to hexagonal R3m phase). Such a high transition temperature is close to that of diisopropylamine bromide (426 K) and higher than that of many other molecular ferroelectrics, such as triethylmethylammonium tetrabromoferrate(III) (360 K); some of the organic-inorganic perovskite ferroelectrics, such as (cyclohexylammonium)2PbBr4 (363 K); and some inorganic ferroelectrics, including BaTiO3 (393 K). The saturated polarization and the coercive field of TAB measured from the ferroelectric hysteresis loop are about 0.54 μC·cm-2 and 0.62 kV/cm, respectively. Given its superior performance, including high phase transition temperature, room-temperature ferroelectricity, small coercive electric field, and adjustable ladder-shaped dielectric constant, TAB will have many potential applications.

Details

ISSN :
19487185
Volume :
10
Issue :
21
Database :
OpenAIRE
Journal :
The journal of physical chemistry letters
Accession number :
edsair.doi.dedup.....646bbaeee4d12f5d4d761e8e447e40cc