Back to Search Start Over

Cross-species analysis of enhancer logic using deep learning

Authors :
David Mauduit
Giorgia Egidy
Ibrahim Ihsan Taskiran
Edouard Cadieu
Ghanem Elias Ghanem
Panagiotis Karras
Linde Van Aerschot
Jasper Wouters
Aline Primot
Gert Hulselmans
Monika Seltenhammer
Leonard I. Zon
Ellen van Rooijen
Valerie Christiaens
Samira Makhzami
Jean-Christophe Marine
Maurizio Fazio
Stein Aerts
Liesbeth Minnoye
Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven)
Dana-Farber Cancer Institute [Boston]
Boston Children's Hospital
Medizinische Universität Wien = Medical University of Vienna
Institut de Génétique et Développement de Rennes (IGDR)
Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)
Université Paris-Saclay
Université libre de Bruxelles (ULB)
C14/18/092, KU Leuven
2016-070, Fondation contre le Cancer
1S03317N, Fonds Wetenschappelijk Onderzoek
Kom op tegen Kanker
Stand Up To Cancer
Flemish Cancer Society
Stichting tegen Kanker
Belgian Cancer Society
ANR-11-INBS-0003,CRB-Anim,Réseau de Centres de Ressources Biologiques pour les animaux domestiques(2011)
European Project: 724226,cis-CONTROL
Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )
Source :
Genome Research, Genome Research, Cold Spring Harbor Laboratory Press, 2020, 30 (12), pp.1815-1834. ⟨10.1101/gr.260844.120⟩, Genome Research, 2020, 30 (12), pp.1815-1834. ⟨10.1101/gr.260844.120⟩, Genome Res
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Deciphering the genomic regulatory code of enhancers is a key challenge in biology because this code underlies cellular identity. A better understanding of how enhancers work will improve the interpretation of noncoding genome variation and empower the generation of cell type-specific drivers for gene therapy. Here, we explore the combination of deep learning and cross-species chromatin accessibility profiling to build explainable enhancer models. We apply this strategy to decipher the enhancer code in melanoma, a relevant case study owing to the presence of distinct melanoma cell states. We trained and validated a deep learning model, called DeepMEL, using chromatin accessibility data of 26 melanoma samples across six different species. We show the accuracy of DeepMEL predictions on the CAGI5 challenge, where it significantly outperforms existing models on the melanoma enhancer of IRF4 Next, we exploit DeepMEL to analyze enhancer architectures and identify accurate transcription factor binding sites for the core regulatory complexes in the two different melanoma states, with distinct roles for each transcription factor, in terms of nucleosome displacement or enhancer activation. Finally, DeepMEL identifies orthologous enhancers across distantly related species, where sequence alignment fails, and the model highlights specific nucleotide substitutions that underlie enhancer turnover. DeepMEL can be used from the Kipoi database to predict and optimize candidate enhancers and to prioritize enhancer mutations. In addition, our computational strategy can be applied to other cancer or normal cell types. ispartof: GENOME RESEARCH vol:30 issue:12 ispartof: location:United States status: published

Details

Language :
English
ISSN :
10889051 and 15495469
Database :
OpenAIRE
Journal :
Genome Research, Genome Research, Cold Spring Harbor Laboratory Press, 2020, 30 (12), pp.1815-1834. ⟨10.1101/gr.260844.120⟩, Genome Research, 2020, 30 (12), pp.1815-1834. ⟨10.1101/gr.260844.120⟩, Genome Res
Accession number :
edsair.doi.dedup.....6458a99eca9fdf94db6b1a5945c3c87c
Full Text :
https://doi.org/10.1101/gr.260844.120⟩