Back to Search
Start Over
On formulas for moments of the Wishart distributions as weighted generating functions of matchings
- Source :
- Discrete Mathematics and Theoretical Computer Science, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), 2010, San Francisco, United States. pp.953-964
- Publication Year :
- 2010
- Publisher :
- HAL CCSD, 2010.
-
Abstract
- We consider the real and complex noncentral Wishart distributions. The moments of these distributions are shown to be expressed as weighted generating functions of graphs associated with the Wishart distributions. We give some bijections between sets of graphs related to moments of the real Wishart distribution and the complex noncentral Wishart distribution. By means of the bijections, we see that calculating these moments of a certain class the real Wishart distribution boils down to calculations for the case of complex Wishart distributions.<br />Nous considérons les lois Wishart non-centrale réel et complexe. Les moments sont décrits comme fonctions génératrices de graphes associées avec les lois Wishart. Nous donnons bijections entre ensembles de graphes relatifs aux moments des lois Wishart non-centrale réel et complexe. Au moyen de la bijection, nous voyons que le calcul des moments d'une certaine classe la loi Wishart réel deviennent le calcul de moments de loi Wishart complexes.
- Subjects :
- Wishart distribution
Class (set theory)
Statistics::Theory
General Computer Science
Matching (graph theory)
Hafnian
Multivariate gamma function
Statistics::Other Statistics
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
01 natural sciences
Theoretical Computer Science
Combinatorics
010104 statistics & probability
Mathematics::Probability
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
Discrete Mathematics and Combinatorics
Statistics::Methodology
0101 mathematics
Mathematics
matching
moments formula
010102 general mathematics
generating funtion
[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]
[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]
Bijection, injection and surjection
Subjects
Details
- Language :
- English
- ISSN :
- 14627264 and 13658050
- Database :
- OpenAIRE
- Journal :
- Discrete Mathematics and Theoretical Computer Science, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), 2010, San Francisco, United States. pp.953-964
- Accession number :
- edsair.doi.dedup.....643ad70d9f9f254279d4c5402e6595a4