Back to Search Start Over

Resistant maltodextrin promotes fasting glucagon-like peptide-1 secretion and production together with glucose tolerance in rats

Authors :
Sumiko Kanahori
Tohru Hira
Hiroshi Hara
Yuka Kishimoto
Asuka Ikee
Source :
British Journal of Nutrition. 114:34-42
Publication Year :
2015
Publisher :
Cambridge University Press (CUP), 2015.

Abstract

Glucagon-like peptide-1 (GLP-1), which is produced and released from enteroendocrine L cells, plays pivotal roles in postprandial glycaemia. The ingestion of resistant maltodextrin (RMD), a water-soluble non-digestible saccharide, improves the glycaemic response. In the present study, we examined whether the continuous feeding of RMD to rats affected GLP-1 levels and glycaemic control. Male Sprague–Dawley rats (6 weeks of age) were fed an American Institute of Nutrition (AIN)-93G-based diet containing either cellulose (5 %) as a control, RMD (2·5 or 5 %), or fructo-oligosaccharides (FOS, 2·5 or 5 %) for 7 weeks. During the test period, an intraperitoneal glucose tolerance test (IPGTT) was performed after 6 weeks. Fasting GLP-1 levels were significantly higher in the 5 % RMD group than in the control group after 6 weeks. The IPGTT results showed that the glycaemic response was lower in the 5 % RMD group than in the control group. Lower caecal pH, higher caecal tissue and content weights were observed in the RMD and FOS groups. Proglucagon mRNA levels were increased in the caecum and colon of both RMD and FOS groups, whereas caecal GLP-1 content was increased in the 5 % RMD group. In addition, a 1 h RMD exposure induced GLP-1 secretion in an enteroendocrine L-cell model, and single oral administration of RMD increased plasma GLP-1 levels in conscious rats. The present study demonstrates that continuous ingestion of RMD increased GLP-1 secretion and production in normal rats, which could be stimulated by its direct and indirect (enhanced gut fermentation) effects on GLP-1-producing cells, and contribute to improving glucose tolerance.

Details

ISSN :
14752662 and 00071145
Volume :
114
Database :
OpenAIRE
Journal :
British Journal of Nutrition
Accession number :
edsair.doi.dedup.....642aa2fc571fd3de3d0b02c2c376b664